Hugues Van Assel[†], Thibault Espinasse [‡], Julien Chiquet[§], Franck Picard[†]

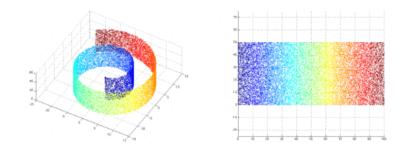
[†] Ecole Normale Supérieure de Lyon
 [‡] Institut Camille Jordan, UCBL, Inria Dracula
 [§] Université Paris-Saclay, AgroParisTech, INRAE

10/2021

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ つへぐ

Generalities about Dimension Reduction

- Input dataset $X \in \mathbb{R}^{n \times p}$ has intrinsic dimensionality q^* .
- DR techniques transform **X** into a new dataset $Z \in \mathbb{R}^{n \times q}$, while retaining the geometry of the data as much as possible.
- Neither the geometry of the data manifold, nor the intrinsic dimensionality q* are known in practice (ill-posed problem).



▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のQ@

Dimension Reduction

Spectral methods

Performs an eigendecomposition of a kernel matrix. These methods can be framed in the kernel PCA¹ framework:

- Linear : PCA, MDS
- Non-linear : Laplacian Eigenmaps, Isomap, LLE, Diffusion maps etc...

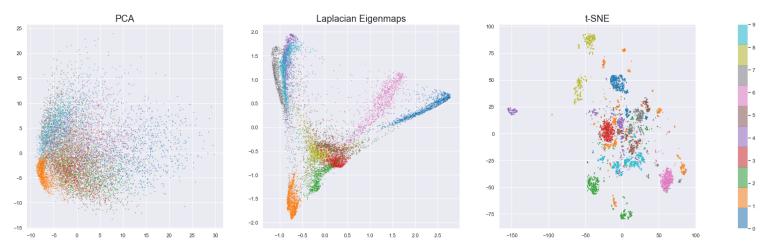
SNE-like methods

Defines similarities in both input and latent spaces and matches them through a non-convex loss optimized by gradient descent.

SNE, t-SNE, UMAP, largeVis

MNIST experiments





◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ● ○ ○ ○ ○

SNE-like Methods

SNE-like methods slightly differ in the definition of the loss function:

Algorithm	Input Similarity	Latent Similarity	Loss Function
SNE	$P_{ij}^{D} = \frac{k_{x}(\boldsymbol{x}_{i} - \boldsymbol{x}_{j})}{\sum_{\ell} k_{x}(\boldsymbol{x}_{i} - \boldsymbol{x}_{\ell})}$	$Q_{ij}^{D} = \frac{k_{Z}(Z_{i} - Z_{j})}{\sum_{\ell} k_{Z}(Z_{i} - Z_{\ell})}$	$-\sum_{i eq j} {\sf P}^D_{ij} \log {\sf Q}^D_{ij}$
Sym-SNE	$\overline{P}^{D}_{ij} = P^{D}_{ij} + P^{D}_{ji}$	$Q_{ij}^{E} = \frac{k_{Z}(Z_{i} - Z_{j})}{\sum_{\ell, t} k_{Z}(Z_{\ell} - Z_{t})}$	$-\sum_{i < j} \overline{P}^D_{ij} \log Q^E_{ij}$
LargeVis	$\overline{P}_{ij}^D = P_{ij}^D + P_{ji}^D$	$Q_{ij}^B = \frac{k_z(\boldsymbol{Z}_i - \boldsymbol{Z}_j)}{1 + k_z(\boldsymbol{Z}_i - \boldsymbol{Z}_j)}$	$-\sum_{i < j} \overline{P}^{D}_{ij} \log Q^{B}_{ij} + \left(2 - \overline{P}^{D}_{ij} ight) \log(1 - Q^{B}_{ij})$
UMAP	$\widetilde{P}^B_{ij} = P^B_{ij} + P^B_{ji} - P^B_{ij}P^B_{ji}$	$Q_{ij}^B = \frac{k_z(\boldsymbol{Z}_i - \boldsymbol{Z}_j)}{1 + k_z(\boldsymbol{Z}_i - \boldsymbol{Z}_j)}$	$-\sum_{i < j} \widetilde{P}^B_{ij} \log Q^B_{ij} + \left(1 - \widetilde{P}^B_{ij} ight) \log(1 - Q^B_{ij})$

- All very good at identifying clusters.
- But the relative position of the embedded clusters can't be interpreted.

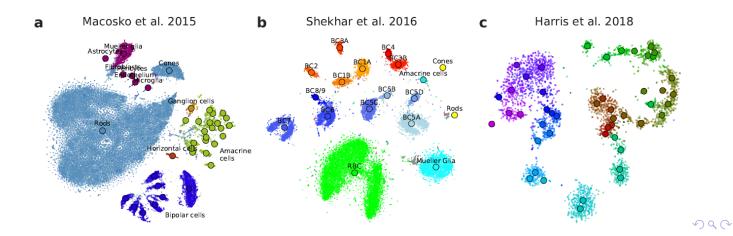
▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ つへぐ

In practice

Table: Google scholar citations

SNE	t-SNE	UMAP
1672	22583	3287

Table: t-SNE on RNASeq data²



Outline

1 Overview of the Model

2 Dimension Reduction as Graph Coupling

- PCA as Graph Coupling
- SNE as Graph Coupling
- Laplacian Eigenmaps as Graph Coupling

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

3 Recovering Large Scale Structure in SNE

└─Overview of the Model

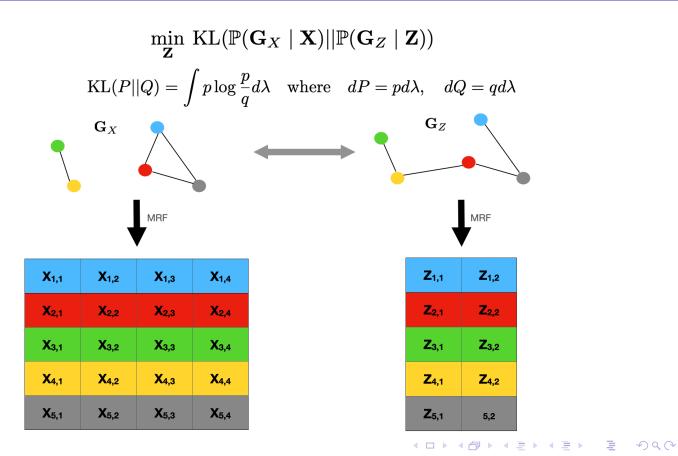
Overview of the Model

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

A Probabilistic Graph Coupling View of Dimension Reduction

└─ Overview of the Model

Our Model



Overview of the Model

General Idea

The KL amounts to minimizing the following cross-entropy:

$$\min_{\boldsymbol{Z}} \quad -\mathbb{E}_{\boldsymbol{G}_{\boldsymbol{X}} \sim \mathbb{P}(\boldsymbol{\bullet} | \boldsymbol{X})} \left[\log \mathbb{P}(\boldsymbol{G}_{\boldsymbol{Z}} = \boldsymbol{G}_{\boldsymbol{X}} | \boldsymbol{Z}) \right]$$

Applying Bayes rule:

$$\mathbb{P}(\boldsymbol{G}_{X}|\boldsymbol{X}) \propto \underbrace{\mathbb{P}(\boldsymbol{X}|\boldsymbol{G}_{X})}_{\text{Likelihood}} \underbrace{\mathbb{P}(\boldsymbol{G}_{X})}_{\text{Prior}}$$

- We will see that the likelihood takes the same form across all the DR methods (pairwise MRF).
- What characterize each method are the priors considered for the latent structuring graphs *G*_{*X*} and *G*_{*Z*}.

Overview of the Model

Pairwise Markov Random Field Likelihood

$$\mathbb{P}(oldsymbol{X}|oldsymbol{G}) \propto \prod_{\substack{i \in oldsymbol{\mathcal{G}}_j}} \Psi_{ij}(oldsymbol{X}_i,oldsymbol{X}_j)$$

Hammersley - Clifford theorem:³

If a probability density can be factorized over the cliques of G then it satisfies the Markov properties with respect to G:

- two nodes that are not connected are conditionally independent given all other nodes.
- if A, B and C are disjoint subsets of nodes such that C separates A from B, then the distribution satisfies : A ⊥⊥ B|C.

Overview of the Model

Gaussian MRF

Let $\Theta \in S_{++}^n(\mathbb{R})$. Consider the Gaussian potential: • $\Psi_{ij}(\mathbf{X}_i, \mathbf{X}_j) = \exp(-\frac{1}{2}\Theta_{ij}\mathbf{X}_i\mathbf{X}_j^T)$

Then

$$oldsymbol{X}|oldsymbol{\Theta}\sim\mathcal{N}(0,oldsymbol{\Theta}^{-1}\otimesoldsymbol{I}_{oldsymbol{
ho}})$$

Markov Properties

Conditional independence given by the zeros of Θ :

$$\boldsymbol{X}_i \perp \boldsymbol{X}_j \mid \boldsymbol{X} \setminus \{ \boldsymbol{X}_i, \boldsymbol{X}_j \} \iff \boldsymbol{\Theta}_{ij} = 0$$

Dimension Reduction as Graph Coupling

Dimension Reduction as Graph Coupling

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ つへぐ

└─ Dimension Reduction as Graph Coupling

└─PCA as Graph Coupling

Towards PCA as Graph Coupling

Starting from the Gaussian MRF with $\Theta_{\chi} \in \mathcal{S}_{++}^{n}(\mathbb{R})$:

$$\boldsymbol{X}|\boldsymbol{\Theta}_{X} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{\Theta}_{X}^{-1} \otimes \boldsymbol{I}_{p}) \tag{1}$$

A natural prior for Θ_{χ} could be one that is conjugate to (1) *i.e.* the Wishart $\Theta_{\chi} \sim \mathcal{W}(\nu, \Pi)$ defined as follows:

$$\mathbb{P}(\mathbf{\Theta}_{\scriptscriptstyle{X}};
u, \mathbf{\Pi}) \propto |\mathbf{\Theta}_{\scriptscriptstyle{X}}|^{rac{
u}{2}} e^{-rac{1}{2} \langle \mathbf{\Pi}, \mathbf{\Theta}_{\scriptscriptstyle{X}}
angle}$$

such that the posterior reads, choosing $\Pi = I_n$:

$$\boldsymbol{\Theta}_{X} | \boldsymbol{X} \sim \mathcal{W}(\nu + p, (\boldsymbol{I}_{n} + \boldsymbol{X} \boldsymbol{X}^{T})^{-1})$$

Dimension Reduction as Graph Coupling

└─PCA as Graph Coupling

PCA as Graph Coupling

Let $\nu \ge n$, $\Theta_x \sim \mathcal{W}(\nu, I_n)$ and $\Theta_z \sim \mathcal{W}(\nu + p - q, I_n)$. If Θ_x and Θ_z structure the rows of respectively **X** and **Z** such that:

$$oldsymbol{X} | oldsymbol{\Theta}_{\scriptscriptstyle X} \sim \mathcal{N}(0, oldsymbol{\Theta}_{\scriptscriptstyle X}^{-1} \otimes oldsymbol{I}_{
ho}) \ oldsymbol{Z} | oldsymbol{\Theta}_{\scriptscriptstyle Z} \sim \mathcal{N}(0, oldsymbol{\Theta}_{\scriptscriptstyle Z}^{-1} \otimes oldsymbol{I}_{oldsymbol{q}})$$

Then the solution of the precision coupling problem:

$$\min_{\boldsymbol{Z} \in \mathbb{R}^{n \times q}} \mathsf{KL}(\mathbb{P}(\boldsymbol{\Theta}_{X}|\boldsymbol{X})||\mathbb{P}(\boldsymbol{\Theta}_{Z}|\boldsymbol{Z}))$$

is a PCA embedding of \boldsymbol{X} with q components.

Considering the SVD $X = USV^T$, the above coupling is solved for $Z^* = US_{[:q]}$ (q principal components).

└─ Dimension Reduction as Graph Coupling

└─SNE as Graph Coupling

Gaussian MRF with Laplacian precision

Let us consider the Gaussian kernel:

$$k(\boldsymbol{x}) = \exp\left(-\|\boldsymbol{x}\|_2^2\right)$$

Graph Laplacian

We define the map $L : \mathbb{R}^{n \times n}_+ \to \mathcal{S}^n_+(\mathbb{R})$ such that for $(i, j) \in [n]^2$:

$$L(oldsymbol{W})_{ij} = \left\{egin{array}{cc} -W_{ij} & ext{if} \ i
eq j \ \sum_j W_{ij} & ext{otherwise} \end{array}
ight.$$

one has, $\forall \boldsymbol{W} \in S_{\boldsymbol{W}}$, with the notation $\overline{\boldsymbol{W}} = \boldsymbol{W} + \boldsymbol{W}^{T}$:

$$\sum_{i,j=1}^{n} W_{ij} \|\boldsymbol{X}_{i} - \boldsymbol{X}_{j}\|_{2}^{2} = \operatorname{tr}\left(\boldsymbol{X}^{T} L(\overline{\boldsymbol{W}})\boldsymbol{X}\right)$$

- Dimension Reduction as Graph Coupling
 - └─SNE as Graph Coupling

Gaussian Markov random field

We recover an improper multivariate Gaussian:

$$\mathbb{P}(\boldsymbol{X}|\boldsymbol{W}) \propto \prod_{ij} k(\boldsymbol{X}_i - \boldsymbol{X}_j)^{W_{ij}}$$
$$\propto \exp\left(-\frac{1}{2}\sum_{i,j=1}^n W_{ij} \|\boldsymbol{X}_i - \boldsymbol{X}_j\|_2^2\right)$$
$$= \frac{|\boldsymbol{L}|_{\star}^{p/2}}{(2\pi)^{\frac{pr(\boldsymbol{L})}{2}}} \exp\left(-\frac{1}{2}\operatorname{tr}\left(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{L}\boldsymbol{X}\right)\right)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ● のへで

where $\boldsymbol{L} = L(\overline{\boldsymbol{W}})$. Hence $\boldsymbol{X} | \boldsymbol{W} \sim \mathcal{N}(0, \boldsymbol{L}^{\dagger} \otimes \boldsymbol{I_p})$.

- Dimension Reduction as Graph Coupling
 - └─SNE as Graph Coupling

Rank deficiency of L

Null space of L^4

Let $(C_1, ..., C_R)$ be a partition of [n] corresponding to the connected components (CCs) of \overline{W} . The null space of $L = L(\overline{W})$ is spanned by the orthonormal vectors $\{U_r\}_{r \in [R]}$ such that for $r \in [R]$, $U_r = \left(n_r^{-1/2} \mathbb{1}_{i \in C_r}\right)_{i \in [n]}$ with $n_r = \text{Card}(C_r)$.

In particular, rank(\boldsymbol{L}) = $n - \# \{CCs \text{ of } \overline{\boldsymbol{W}}\}$.

 $\mathcal{N}(0, \mathbf{L}^{\dagger} \otimes \mathbf{I}_{\mathbf{p}})$ only well defines a probability on $(\ker \mathbf{L})^{\perp} \otimes \mathbb{R}^{\mathbf{p}}$ *i.e.* is improper on $\mathbb{R}^{n} \otimes \mathbb{R}^{\mathbf{p}}$.

⁴Chung 1997.

Dimension Reduction as Graph Coupling

SNE as Graph Coupling

Degenerate MRF : generalization

Let k be even and positive, we now consider:

$$\mathbb{P}(oldsymbol{X} | oldsymbol{W}) ~\propto~ \prod_{ij} k(oldsymbol{X}_i - oldsymbol{X}_j)^{W_{ij}}$$

where $\boldsymbol{W} \in \mathbb{N}^{n \times n}$ (amounts to $\Psi_{ij}(\boldsymbol{X}_i, \boldsymbol{X}_j) = k(\boldsymbol{X}_i - \boldsymbol{X}_j)^{W_{ij}}$). The above is a pairwise Markov random field associated to $\overline{\boldsymbol{W}} = \boldsymbol{W} + \boldsymbol{W}^T$, indeed since k is even:

$$\mathbb{P}(\boldsymbol{X}|\boldsymbol{W}) = \mathcal{C}_k(\boldsymbol{W})^{-1} \prod_{i < j} k(\boldsymbol{X}_i - \boldsymbol{X}_j)^{\overline{W}_{ij}}$$

where $\mathcal{C}_k(\boldsymbol{W}) = \int_{\mathcal{X}} \prod_{ij} k(\boldsymbol{X}_i - \boldsymbol{X}_j)^{W_{ij}} d\boldsymbol{X}$

Dimension Reduction as Graph Coupling

SNE as Graph Coupling

Extension to other kernel functions

We would like to go beyond the Gaussian kernel, as heavy-tails kernels have been shown to be sometimes more efficient in DR (*e.g.* student kernel in $tSNE^5$).

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ④ ◎ ◎

Shift-Invariant Pariwise MRF integrability

If k is \mathbb{R}^{p} -integrable and bounded above, then $\boldsymbol{X} \mapsto \prod_{ij} k(\boldsymbol{X}_{i} - \boldsymbol{X}_{j})^{W_{ij}}$ is integrable on $(\ker \boldsymbol{L})^{\perp} \otimes \mathbb{R}^{p}$.

⁵van der Maaten and Hinton 2008.

Dimension Reduction as Graph Coupling

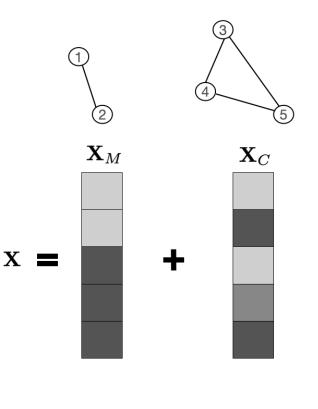
SNE as Graph Coupling

Limit of proper distributions

Let
$$\mathbf{X}_M = \operatorname{Proj}_{(\ker \mathbf{L}) \otimes \mathbb{R}^p}(\mathbf{X})$$
 and $\mathbf{X}_C = \operatorname{Proj}_{(\ker \mathbf{L})^{\perp} \otimes \mathbb{R}^p}(\mathbf{X})$.

- *X_M* is the mean of *X* on the CCs of *W*.
- X_C is centered on the CCs of \overline{W} .

 X_C is structured by the model unlike X_M which is taken from a distribution with infinite variance.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

└─ Dimension Reduction as Graph Coupling

└─SNE as Graph Coupling

Diffuse Model for X_M

We will consider the following distribution:

$$\mathbb{P}^{arepsilon}(oldsymbol{X}_{\scriptscriptstyle M}|oldsymbol{W}) \propto f^{arepsilon}(oldsymbol{X}_{\scriptscriptstyle M},oldsymbol{W})$$

where $\forall \varepsilon > 0, f^{\varepsilon}(\cdot, \boldsymbol{W})$ is integrable on $(\ker \boldsymbol{L}) \otimes \mathbb{R}^{p}$ and $f^{\varepsilon}(\cdot, \boldsymbol{W}) \xrightarrow[\varepsilon \to 0]{} 1$ almost everywhere.

The likelihood is constructed as the product measure:

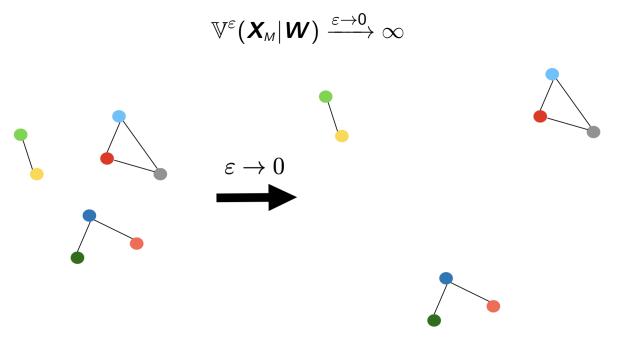
$$\mathbb{P}(oldsymbol{X}|oldsymbol{W}) = \mathbb{P}(oldsymbol{X}_{C}|oldsymbol{W}) imes \mathbb{P}^{arepsilon}(oldsymbol{X}_{M}|oldsymbol{W})
onumber \ rac{arepsilon o 0}{\longrightarrow} \propto \prod_{ij} k(oldsymbol{X}_{i}-oldsymbol{X}_{j})^{W_{ij}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ 少久(~

Dimension Reduction as Graph Coupling

SNE as Graph Coupling

Variability at the diffusion limit



The shift-invariant pairwise MRF has a **clustering effect**.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

Dimension Reduction as Graph Coupling

└─SNE as Graph Coupling

Graph Priors (Gaussian kernel)

Definition (Laplacian Wishart distribution)

Let $\Pi \in \mathbb{R}^{n \times n}$, $\nu \in \mathbb{R}$. For $W \in S_w$ we introduce the Laplacian Wishart distribution, denoted by $W \sim \mathcal{LW}(\nu, \Pi)$:

$$\mathbb{P}(\boldsymbol{W};\nu,\boldsymbol{\Pi}) \propto |L(\boldsymbol{W})|_{\star}^{\nu/2} e^{-\frac{1}{2}\langle \boldsymbol{\Pi},\boldsymbol{W}\rangle} \Omega_{\mathcal{P}}(\boldsymbol{W})$$
(2)

(ロ) (同) (三) (三) (三) (○) (○)

where $\Omega_B(\boldsymbol{W}) = \prod_{ij} \mathbb{1}_{W_{ij} \leq 1}$, $\Omega_D(\boldsymbol{W}) = \prod_i \mathbb{1}_{W_{i+}=1}$ and $\Omega_E(\boldsymbol{W}) = \mathbb{1}_{W_{++}=n} \prod_{ij} (W_{ij}!)^{-1}$ and $|\cdot|_{\star}$ is the pseudo determinant.

Generalization to other kernels is also possible.

- └─ Dimension Reduction as Graph Coupling
 - └─SNE as Graph Coupling

Graph Posterior

Posterior limit

Let k be an integrable upper bounded function, $\mathbf{K} = (k(\mathbf{X}_i - \mathbf{X}_j))_{(i,j) \in [n]^2}$ and $\mathcal{P} \in \{B, D, E\}$. If $\mathbf{W} \sim \mathcal{LW}(\cdot; 1, 1)$ then, assuming the pairwise MRF structure when $\varepsilon \to 0$:

$$oldsymbol{W}|oldsymbol{X}\sim\mathbb{P}_{_{\mathcal{P}}}^{\star}(\cdot \ ;oldsymbol{K})$$
 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ 少久(~

If
$$\boldsymbol{W} \sim \mathbb{P}_{\mathcal{P}}^{\star}(\cdot ; \boldsymbol{K})$$
 then:
• if $\mathcal{P} = B$, $\forall (i, j) \in [n]^2$, $W_{ij} \stackrel{\mathbb{L}}{\sim} \mathcal{B}(K_{ij}/(1 + K_{ij}))$.
• if $\mathcal{P} = D$, $\forall i \in [n]$, $\boldsymbol{W}_i \stackrel{\mathbb{L}}{\sim} \mathcal{M}(1, \boldsymbol{K}_i/K_{i+})$.
• if $\mathcal{P} = E$, $\boldsymbol{W} \sim \mathcal{M}(n, \boldsymbol{K}/K_{++})$.

Dimension Reduction as Graph Coupling

└─SNE as Graph Coupling

Retrieving SNE-like Methods

For $(\mathcal{P}_{X}, \mathcal{P}_{Z}) \in \{B, D, E\}^{2}$, we can retrieve the losses of SNE-like methods as $KL(\mathbb{P}_{p_{X}}^{\star}(\cdot ; \mathbf{K}_{X})||\mathbb{P}_{p_{Z}}^{\star}(\cdot ; \mathbf{K}_{Z}))$.

$\mathcal{P}_Z, \mathcal{P}_X$	В	D	E
В	UMAP		
D	LargeVis	SNE	Sym-SNE

Algorithm	Input Similarity	Latent Similarity	Loss Function
SNE	$P_{ij}^{D} = \frac{k_{x}(\boldsymbol{X}_{i} - \boldsymbol{X}_{j})}{\sum_{\ell} k_{x}(\boldsymbol{X}_{i} - \boldsymbol{X}_{\ell})}$	$Q_{ij}^{D} = \frac{k_{z}(\boldsymbol{Z}_{i} - \boldsymbol{Z}_{j})}{\sum_{\ell} k_{z}(\boldsymbol{Z}_{i} - \boldsymbol{Z}_{\ell})}$	$-\sum_{i eq j} {\sf P}^D_{ij} \log {\sf Q}^D_{ij}$
Sym-SNE	$\overline{P}_{ij}^D = P_{ij}^D + P_{ji}^D$	$Q_{ij}^{E} = \frac{k_{Z}(Z_{i} - Z_{j})}{\sum_{\ell, t} k_{Z}(Z_{\ell} - Z_{t})}$	$-\sum_{i < j} \overline{P}^{D}_{ij} \log Q^{E}_{ij}$
LargeVis	$\overline{P}_{ij}^D = P_{ij}^D + P_{ji}^D$	$Q_{ij}^B = \frac{k_z(\boldsymbol{Z}_i - \boldsymbol{Z}_j)}{1 + k_z(\boldsymbol{Z}_i - \boldsymbol{Z}_j)}$	$-\sum_{i < j} \overline{P}^D_{ij} \log Q^B_{ij} + \left(2 - \overline{P}^D_{ij} ight) \log(1 - Q^B_{ij})$
UMAP	$\widetilde{P}^B_{ij} = P^B_{ij} + P^B_{ji} - P^B_{ij}P^B_{ji}$	$Q_{ij}^B = \frac{k_z(\mathbf{Z}_i - \mathbf{Z}_j)}{1 + k_z(\mathbf{Z}_i - \mathbf{Z}_j)}$	$-\sum_{i < j} \widetilde{ extsf{P}}^B_{ij} \log extsf{Q}^B_{ij} + \left(1 - \widetilde{ extsf{P}}^B_{ij} ight) \log(1 - extsf{Q}^B_{ij})$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

└─ Dimension Reduction as Graph Coupling

Laplacian Eigenmaps as Graph Coupling

Retrieving Laplacian Eigenmaps

Laplacian Eigenmaps as Graph Coupling

Let $W_x \sim \mathcal{LW}(\cdot; 1, 1)$. Let $\nu > 0$, $\Theta_z \sim \mathcal{W}(\nu, I_n)$. If W_x and Θ_z structure the rows of respectively **X** and **Z** such that:

$$egin{aligned} \mathbb{P}(oldsymbol{X} | oldsymbol{W}_{X}) & \propto \prod_{ij} k(oldsymbol{X}_{i} - oldsymbol{X}_{j})^{W_{X,ij}} \ oldsymbol{Z} | oldsymbol{\Theta}_{Z} & \sim \mathcal{N}(0, oldsymbol{\Theta}_{Z}^{-1} \otimes oldsymbol{I}_{q}) \end{aligned}$$

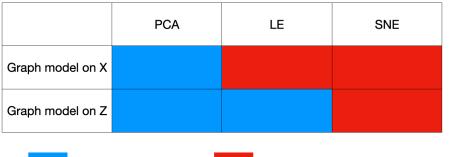
Then the solution of the precision coupling problem:

$$\min_{\boldsymbol{Z} \in \mathbb{R}^{n \times q}} \mathsf{KL}(\mathbb{P}(L(\overline{\boldsymbol{W}}_{X})|\boldsymbol{X})||\mathbb{P}(\boldsymbol{\Theta}_{Z}|\boldsymbol{Z}))$$

is a Laplacian Eigenmaps embedding of X with q components.

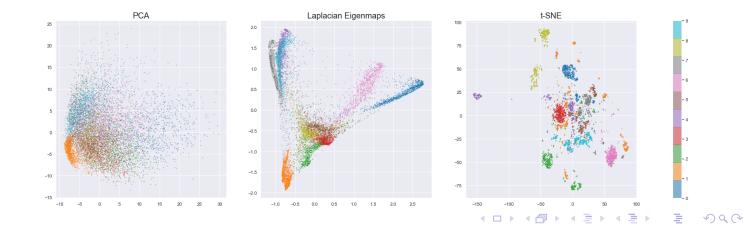
- └─ Dimension Reduction as Graph Coupling
 - Laplacian Eigenmaps as Graph Coupling

Effect of the degeneracy



Full-rank structure

Degeneracy (clustering effect)

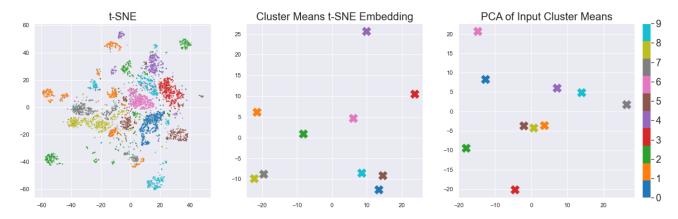


└─ Recovering Large Scale Structure in SNE

Recovering Large Scale Structure in SNE

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ つへぐ

Large Scale Deficiency



Left: t-SNE embeddings initialized with i.i.d $\mathcal{N}(0,1)$ coordinates. Middle: using these t-SNE embeddings, mean coordinates for each digit. Right: matrix of mean input coordinates for each of the 10 digits on MNIST embedded using PCA.

Recovering Large Scale Structure in SNE

Towards Positioning Clusters

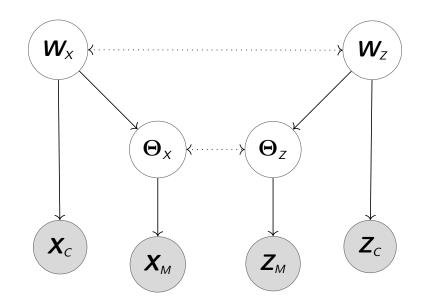


Figure: Plain directed arrows represent conditional dependencies while dotted arrows represent the coupling links. In addition to the objective considered previously between W_X and W_Z , we consider a coupling between Θ_X and Θ_Z to structure the CCs' positions in the embeddings.

Hierarchical Graph Coupling

Let $\mathcal{P}_x \in \{B, D, E\}$, k_x is a valid kernel and $\nu_x \ge n$

$$W_{X} \sim \mathbb{P}^{arepsilon}_{\mathcal{P}_{X},k_{X}}(\cdot \ ; 1,1)$$
 (3)

$$\boldsymbol{X}_{C} | \boldsymbol{W}_{X} \sim \mathbb{P}_{k_{X}}(\cdot | \boldsymbol{W}_{X})$$
(4)

$$\boldsymbol{\Theta}_{X} | \boldsymbol{W}_{X} \sim \mathcal{W}(\nu_{X}, \boldsymbol{I}_{R})$$
(5)

$$\boldsymbol{X}_{M}|\boldsymbol{\Theta}_{X} \sim \mathcal{N}\left(0, \left(\varepsilon \boldsymbol{U}_{[:R]}\boldsymbol{\Theta}_{X} \boldsymbol{U}_{[R]}^{T}\right)^{-1} \otimes \boldsymbol{I}_{p}\right)$$
(6)

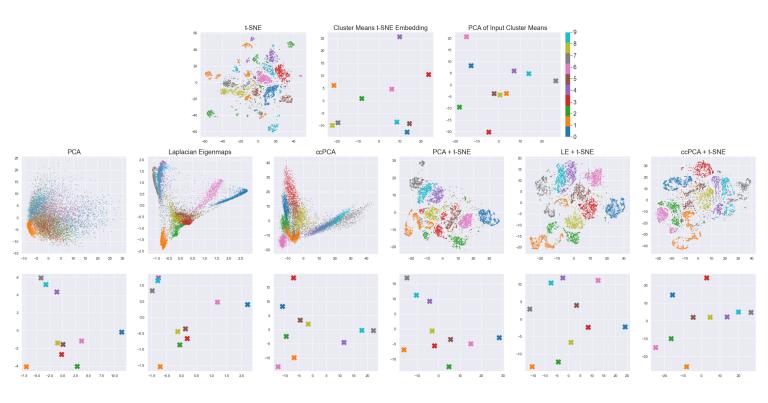
 U_{R} are the eigenvectors associated to the Laplacian null-space of \overline{W}_{X} . Given a graph W_{X} , the idea is to structure the CCs' relative positions with a full-rank Gaussian model. The same model is considered for W_{Z} , Θ_{Z} and Z.

Hierarchical Graph Coupling Inference

Inference in this model is performed with a heuristic consisting of two steps:

- Solve the coupling problem between Θ_X and Θ_Z with a PCA embedding of $\mathbb{E}_{\mathbb{P}_{P_X}(\cdot; K_X)} \left[U_{[R]} U_{[R]}^T \right] X$ (ccPCA).
- Solve the coupling problem between W_X and W_Z by running the associated DR algorithm.

ccPCA in Action



<□ > <□ > <□ > < Ξ > < Ξ > < Ξ > Ξ の < ⊙

Recovering Large Scale Structure in SNE

the end

Thank you!

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧ ● ○ ○ ○ ○

Biblio I

- Julian Besag. "Spatial interaction and the statistical analysis of lattice systems". In: *Journal of the Royal Statistical Society: Series B (Methodological)* 36.2 (1974), pp. 192–225.
 - F. R. K. Chung. *Spectral Graph Theory*. American Mathematical Society, 1997.

- Jihun Ham et al. "A kernel view of the dimensionality reduction of manifolds". In: *Proceedings of the twenty-first international conference on Machine learning*. 2004, p. 47.
- Dmitry Kobak and Philipp Berens. "The art of using t-SNE for single-cell transcriptomics". In: *Nature communications* 10.1 (2019), pp. 1–14.

└─ Recovering Large Scale Structure in SNE

Biblio II

 L.J.P. van der Maaten and G.E. Hinton. "Visualizing High-Dimensional Data Using t-SNE". English. In: *Journal of Machine Learning Research* 9.nov (2008). Pagination: 27, pp. 2579–2605. ISSN: 1532-4435.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ 少久(~