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A Probabilistic Graph Coupling View of Dimension Reduction

Generalities about Dimension Reduction

Input dataset X ∈ Rn×p has intrinsic dimensionality q?.

DR techniques transform X into a new dataset Z ∈ Rn×q,
while retaining the geometry of the data as much as possible.

Neither the geometry of the data manifold, nor the intrinsic
dimensionality q? are known in practice (ill-posed problem).
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Dimension Reduction

Spectral methods

Performs an eigendecomposition of a kernel matrix. These methods
can be framed in the kernel PCA1 framework:

Linear : PCA, MDS

Non-linear : Laplacian Eigenmaps, Isomap, LLE, Diffusion
maps etc...

SNE-like methods

Defines similarities in both input and latent spaces and matches
them through a non-convex loss optimized by gradient descent.

SNE, t-SNE, UMAP, largeVis

1Ham et al. 2004.
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MNIST experiments
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SNE-like Methods

SNE-like methods slightly differ in the definition of the loss function:

Algorithm Input Similarity Latent Similarity Loss Function

SNE PD
ij =

kx (Xi−Xj )∑
` kx (Xi−X`)

QD
ij =

kz (Zi−Zj )∑
` kz (Zi−Z`)

−
∑

i 6=j P
D
ij log QD

ij

Sym-SNE P
D
ij = PD

ij + PD
ji QE

ij =
kz (Zi−Zj )∑
`,t kz (Z`−Zt )

−
∑

i<j P
D
ij log QE

ij

LargeVis P
D
ij = PD

ij + PD
ji QB

ij =
kz (Zi−Zj )

1+kz (Zi−Zj )
−
∑

i<j P
D
ij log QB

ij +
(

2− P
D
ij

)
log(1− QB

ij )

UMAP P̃B
ij = PB

ij + PB
ji − PB

ij P
B
ji QB

ij =
kz (Zi−Zj )

1+kz (Zi−Zj )
−
∑

i<j P̃
B
ij log QB

ij +
(

1− P̃B
ij

)
log(1− QB

ij )

All very good at identifying clusters.

But the relative position of the embedded clusters can’t be
interpreted.
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In practice

Table: Google scholar citations

SNE t-SNE UMAP

1672 22583 3287

Table: t-SNE on RNASeq data2

2Kobak and Berens 2019.
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Overview of the Model

Our Model
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Overview of the Model

General Idea

The KL amounts to minimizing the following cross-entropy:

min
Z

−EGX∼P(•|X ) [logP(GZ = GX |Z )]

Applying Bayes rule:

P(GX |X ) ∝ P(X |GX)︸ ︷︷ ︸
Likelihood

P(GX)︸ ︷︷ ︸
Prior

We will see that the likelihood takes the same form across
all the DR methods (pairwise MRF).

What characterize each method are the priors considered
for the latent structuring graphs GX and GZ .
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Overview of the Model

Pairwise Markov Random Field Likelihood

P(X |G ) ∝
∏
i
G∼j

Ψij(Xi ,Xj)

Hammersley - Clifford theorem:3

If a probability density can be factorized over the cliques of G then
it satisfies the Markov properties with respect to G :

two nodes that are not connected are conditionally independent
given all other nodes.

if A, B and C are disjoint subsets of nodes such that C
separates A from B, then the distribution satisfies : A ⊥⊥ B|C .

3Besag 1974.
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Overview of the Model

Gaussian MRF

Let Θ ∈ Sn++(R). Consider the Gaussian potential:

Ψij(Xi ,Xj) = exp(−1
2 ΘijXiXT

j )

Then

X |Θ ∼ N (0,Θ−1 ⊗ Ip)

Markov Properties

Conditional independence given by the zeros of Θ:

Xi ⊥ Xj | X\{Xi ,Xj} ⇐⇒ Θij = 0
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Dimension Reduction as Graph Coupling

Dimension Reduction as Graph Coupling
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Dimension Reduction as Graph Coupling

PCA as Graph Coupling

Towards PCA as Graph Coupling

Starting from the Gaussian MRF with ΘX ∈ Sn++(R):

X |ΘX ∼ N (0,Θ−1
X ⊗ Ip) (1)

A natural prior for ΘX could be one that is conjugate to (1) i.e. the
Wishart ΘX ∼ W(ν,Π) defined as follows:

P(ΘX ; ν,Π) ∝ |ΘX |
ν
2 e−

1
2
〈Π,ΘX 〉

such that the posterior reads, choosing Π = In:

ΘX |X ∼ W(ν + p, (In + XXT )−1)
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Dimension Reduction as Graph Coupling

PCA as Graph Coupling

PCA as Graph Coupling

Let ν ≥ n, ΘX ∼ W(ν, In) and ΘZ ∼ W(ν + p − q, In). If ΘX and
ΘZ structure the rows of respectively X and Z such that:

X |ΘX ∼ N (0,Θ−1
X ⊗ Ip)

Z |ΘZ ∼ N (0,Θ−1
Z ⊗ Iq)

Then the solution of the precision coupling problem:

min
Z∈Rn×q

KL(P(ΘX |X )||P(ΘZ |Z ))

is a PCA embedding of X with q components.

Considering the SVD X = USV T , the above coupling is solved for
Z ∗ = US[:q] (q principal components).
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Dimension Reduction as Graph Coupling

SNE as Graph Coupling

Gaussian MRF with Laplacian precision

Let us consider the Gaussian kernel:

k(x) = exp
(
−‖x‖2

2

)
Graph Laplacian

We define the map L : Rn×n
+ → Sn+(R) such that for (i , j) ∈ [n]2:

L(W )ij =

{
−Wij if i 6= j∑

j Wij otherwise

one has, ∀W ∈ SW , with the notation W = W + W T :

n∑
i ,j=1

Wij‖Xi − Xj‖2
2 = tr

(
XTL(W )X

)
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Dimension Reduction as Graph Coupling

SNE as Graph Coupling

Gaussian Markov random field

We recover an improper multivariate Gaussian:

P(X |W ) ∝
∏
ij

k(Xi − Xj)
Wij

∝ exp

−1

2

n∑
i ,j=1

Wij‖Xi − Xj‖2
2


=

|L|p/2
?

(2π)
p r(L)

2

exp

(
−1

2
tr
(
XTLX

))

where L = L(W ).
Hence X |W ∼ N (0,L† ⊗ Ip).
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Dimension Reduction as Graph Coupling

SNE as Graph Coupling

Rank deficiency of L

Null space of L4

Let (C1, ...,CR) be a partition of [n] corresponding to the connected
components (CCs) of W . The null space of L = L(W ) is spanned
by the orthonormal vectors {Ur}r∈[R] such that for r ∈ [R],

Ur =
(
n
−1/2
r 1i∈Cr

)
i∈[n]

with nr = Card(Cr ).

In particular, rank(L) = n −#{CCs of W }.

N (0,L† ⊗ Ip) only well defines a probability on (ker L)⊥ ⊗ Rp

i.e. is improper on Rn ⊗ Rp.

4Chung 1997.
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Dimension Reduction as Graph Coupling

SNE as Graph Coupling

Degenerate MRF : generalization

Let k be even and positive, we now consider:

P(X |W ) ∝
∏
ij

k(Xi − Xj)
Wij

where W ∈ Nn×n (amounts to Ψij(Xi ,Xj) = k(Xi − Xj)
Wij ).

The above is a pairwise Markov random field associated to
W = W + W T , indeed since k is even:

P(X |W ) = Ck(W )−1
∏
i<j

k(Xi − Xj)
W ij

where Ck(W ) =
∫
X
∏

ij k(Xi − Xj)
WijdX
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Dimension Reduction as Graph Coupling

SNE as Graph Coupling

Extension to other kernel functions

We would like to go beyond the Gaussian kernel, as heavy-tails
kernels have been shown to be sometimes more efficient in DR (e.g.
student kernel in tSNE5).

Shift-Invariant Pariwise MRF integrability

If k is Rp-integrable and bounded above, then
X 7→

∏
ij k(Xi − Xj)

Wij is integrable on (ker L)⊥ ⊗ Rp.

5van der Maaten and Hinton 2008.
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Dimension Reduction as Graph Coupling

SNE as Graph Coupling

Limit of proper distributions

Let XM = Proj(ker L)⊗Rp(X ) and
XC = Proj(ker L)⊥⊗Rp(X ).

XM is the mean of X on the
CCs of W .

XC is centered on the CCs of
W .

XC is structured by the model
unlike XM which is taken from a
distribution with infinite variance.
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Dimension Reduction as Graph Coupling

SNE as Graph Coupling

Diffuse Model for XM

We will consider the following distribution:

Pε(XM |W ) ∝ f ε(XM ,W )

where ∀ε > 0, f ε(·,W ) is integrable on (ker L)⊗ Rp and
f ε(·,W ) −−−→

ε→0
1 almost everywhere.

The likelihood is constructed as the product measure:

P(X |W ) = P(XC |W )× Pε(XM |W )

ε→0−−−→∝
∏
ij

k(Xi − Xj)
Wij
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Dimension Reduction as Graph Coupling

SNE as Graph Coupling

Variability at the diffusion limit

Vε(XM |W )
ε→0−−−→∞

The shift-invariant pairwise MRF has a clustering effect.
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Dimension Reduction as Graph Coupling

SNE as Graph Coupling

Graph Priors (Gaussian kernel)

Definition (Laplacian Wishart distribution)

Let Π ∈ Rn×n, ν ∈ R. For W ∈ SW we introduce the Laplacian
Wishart distribution, denoted by W ∼ LW(ν,Π):

P(W ; ν,Π) ∝ |L(W )|ν/2
? e−

1
2
〈Π,W 〉ΩP(W ) (2)

where ΩB(W ) =
∏

ij 1Wij≤1, ΩD(W ) =
∏

i 1Wi+=1 and

ΩE(W ) = 1W++=n
∏

ij(Wij !)
−1 and | · |? is the pseudo determinant.

Generalization to other kernels is also possible.



A Probabilistic Graph Coupling View of Dimension Reduction

Dimension Reduction as Graph Coupling

SNE as Graph Coupling

Graph Posterior

Posterior limit

Let k be an integrable upper bounded function,
K = (k(Xi − Xj))(i ,j)∈[n]2 and P ∈ {B,D,E}.
If W ∼ LW(· ; 1, 1) then, assuming the pairwise MRF structure
when ε→ 0:

W |X ∼ P?P(· ; K ) .

If W ∼ P?P(· ; K ) then:

if P = B, ∀(i , j) ∈ [n]2, Wij
⊥⊥∼ B (Kij/(1 + Kij)).

if P = D, ∀i ∈ [n], Wi
⊥⊥∼M (1,Ki/Ki+).

if P = E , W ∼M (n,K/K++).
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Dimension Reduction as Graph Coupling

SNE as Graph Coupling

Retrieving SNE-like Methods

For (PX ,PZ) ∈ {B,D,E}2, we can retrieve the losses of SNE-like
methods as KL(P?PX

(· ; KX)||P?PZ
(· ; KZ)).

PZ , PX B D E

B UMAP

D LargeVis SNE Sym-SNE

Algorithm Input Similarity Latent Similarity Loss Function

SNE PD
ij =

kx (Xi−Xj )∑
` kx (Xi−X`)

QD
ij =

kz (Zi−Zj )∑
` kz (Zi−Z`)

−
∑

i 6=j P
D
ij log QD

ij

Sym-SNE P
D
ij = PD

ij + PD
ji QE

ij =
kz (Zi−Zj )∑
`,t kz (Z`−Zt )

−
∑

i<j P
D
ij log QE

ij

LargeVis P
D
ij = PD

ij + PD
ji QB

ij =
kz (Zi−Zj )

1+kz (Zi−Zj )
−
∑

i<j P
D
ij log QB

ij +
(

2− P
D
ij

)
log(1− QB

ij )

UMAP P̃B
ij = PB

ij + PB
ji − PB

ij P
B
ji QB

ij =
kz (Zi−Zj )

1+kz (Zi−Zj )
−
∑

i<j P̃
B
ij log QB

ij +
(

1− P̃B
ij

)
log(1− QB

ij )
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Dimension Reduction as Graph Coupling

Laplacian Eigenmaps as Graph Coupling

Retrieving Laplacian Eigenmaps

Laplacian Eigenmaps as Graph Coupling

Let WX ∼ LW(· ; 1, 1). Let ν > 0, ΘZ ∼ W(ν, In). If WX and ΘZ

structure the rows of respectively X and Z such that:

P(X |WX) ∝
∏
ij

k(Xi − Xj)
WX ,ij

Z |ΘZ ∼ N (0,Θ−1
Z ⊗ Iq)

Then the solution of the precision coupling problem:

min
Z∈Rn×q

KL(P(L(W X)|X )||P(ΘZ |Z ))

is a Laplacian Eigenmaps embedding of X with q components.
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Dimension Reduction as Graph Coupling

Laplacian Eigenmaps as Graph Coupling

Effect of the degeneracy
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Recovering Large Scale Structure in SNE

Large Scale Deficiency

Left: t-SNE embeddings initialized with i.i.d N (0, 1) coordinates.
Middle: using these t-SNE embeddings, mean coordinates for each
digit. Right: matrix of mean input coordinates for each of the 10

digits on MNIST embedded using PCA.



A Probabilistic Graph Coupling View of Dimension Reduction

Recovering Large Scale Structure in SNE

Towards Positioning Clusters

ΘX

WX

XC XM

ΘZ

WZ

ZCZM

Figure: Plain directed arrows represent conditional dependencies while
dotted arrows represent the coupling links. In addition to the objective
considered previously between WX and WZ , we consider a coupling
between ΘX and ΘZ to structure the CCs’ positions in the embeddings.
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Recovering Large Scale Structure in SNE

Hierarchical Graph Coupling

Let PX ∈ {B,D,E}, kx is a valid kernel and νX ≥ n

WX ∼ PεPX ,kx
(· ; 1, 1) (3)

XC |WX ∼ Pkx (· |WX) (4)

ΘX |WX ∼ W(νX , IR) (5)

XM |ΘX ∼ N
(

0,
(
εU[:R]ΘXUT

[R]

)−1
⊗ Ip

)
(6)

U[R] are the eigenvectors associated to the Laplacian null-space of
W X . Given a graph WX , the idea is to structure the CCs’ relative
positions with a full-rank Gaussian model. The same model is
considered for WZ , ΘZ and Z .
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Recovering Large Scale Structure in SNE

Hierarchical Graph Coupling Inference

Inference in this model is performed with a heuristic consisting of
two steps:

Solve the coupling problem between ΘX and ΘZ with a PCA
embedding of EPPX (·;KX )

[
U[:R]UT

[R]

]
X (ccPCA).

Solve the coupling problem between WX and WZ by running
the associated DR algorithm.
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Recovering Large Scale Structure in SNE

ccPCA in Action
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Recovering Large Scale Structure in SNE

the end

Thank you!
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Recovering Large Scale Structure in SNE
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