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In modern ML, most modalities follow a common pattern

Step 1 : Pretraining

- Learn data representations via a pretext task
- Train on very large diverse dataset

- Learn via view generation / invariances

Step 2 : Fine-tuning
- Adapt the model to the target task

- Train with labeled data from target domain
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Step 1 : Pretraining

- Learn data representations via a pretext task

| , Our focus today !
- Train on very large diverse dataset

- Learn via view generation / invariances

View generation / Invariance is encoded via a data augmentation function:




How to go from view generation to pre-training ?

Option A :
Reconstruction
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Ex : Auto-Encoder,

Popular in NLP.
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How to go from view generation to pre-training ?

Option A : - Maximize Similarity | Option B : Joint
- ** | L Information Content ) Embe d din
Reconstruction ’ i O

Input-space prediction Projector Projecton Latent-space prediction

Ex : Auto-Encoder, e Ex : SImCLR, DINO, CLIP

[LLMs [

or Popular in computer vision.

Popular in NLP.

Which approach to choose for pretraining :
Reconstruction or Joint Embedding ?



Controlled Setting
Data. V1 € n, X; =X +Yi, Vi~ N(O>F>

Core Features (k first components) Data Noise (d-k last components)

Data Augmentation.

T(x) =x+60+ay, 0 ~N(0,0), vy~ N(0,T)

Other Noise : _Data Noise

Aug / Data N0|se Allgnment

Linear Models. For tractability fv X > ‘X

Weight Matrix



We consider these 3 problems: T : data augmentation distribution

Supervised Learning
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We consider these 3 problems: T : data augmentation distribution

Supervised Learning

, What data augmentation is
min ) En ' MIE . | needed to recover optimal
i, performances ?

. 1 :
subject to - Z )
1€[n]




1 - Supervised Learning : Consistency Regardless of
Augmentations




1 - Supervised Learning : Consistency Regardless of
Augmentations

Equivalence with Ridge regularization

1 ﬂ 1 ﬂ
= ) By [lyi = Vel = VIR + = ) llyi = VErr [7(x0)] [

ie€n] i€n]

where ||V|% = Tr(VXV') and

5 %Z 2o [1(x)7(%:) 7] = Eroor ()] Ernr [r(x)] T . (Cov)

1




1 - Supervised Learning : Consistency Regardless of
Augmentations

Proposition

Let V* (resp. {7*) solve the Supervised Learning problem with data augmen-
tation 7 («) for the clean data X (resp. the corrupted data X). Then:

~

V* S VA

a.sS.

holds almost surely as n — +oo (infinite samples) for any alignment c.



2 - Reconstruction

win = 3 Eer [~ foUi(rix))I3]

ey 4\4/4-
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Encoder Decoder



2 - Reconstruction

min ~ S Eror [Ix — fo(fe(rx:)2] -

ED n
1€[n]

Let X; = E,w7[7(x;)], X = (X1,...,%X,)". Consider the SVD

1

IXTX (1X'X+ %) * =R&P,

where R, P € R%*? are orthogonal and ® = diag(¢y,...,¢q) with ¢ > ---
¢q > 0. Then solutions take the form

[V

N |—

E'=TP[ (1X' X+3%) *, D'=Ru®T"

where T is any invertible R*** matrix, P; and Ry are the first k£ columns of P

and R, and ®, = diag(¢1, ..., ¢r).



2 - Reconstruction : Requires Minimal Alignment

1
gy o 3 By [ folfelrtx)IE]
1€ N

Proposition

Let E* (resp. f}*) be the optimal encoder of the Reconstruction Problem for
the clean data X (resp. the corrupted data X). The following limit:

E* s B

a.sS.

holds as n — 4oco (infinite samples), if and only if the alignment satisfies

o > aRC.



3 - Joint-Embedding

1
min — Z oy o~ T [HfW(Tl(Xz)) —

W T
1€n]

1

subject to — Z T [fW(T(Xz‘))fW(T(Xz’))T]

T
1€n]

O o

Encoder



3 - Joint-Embedding

W T
1€n]
1
biect to — DIy Z N' =1
subject to '%]] 7 | fw(T(x:)) fw (7(x:)) ' | = Lk

Let S = %ZZ @ T [T(X@)T(Xi)—r}, G = %ZZ Er T | T(X) | Er o [T(X,,;)]T.
Consider the eigendecomposition:

1 1
ST2GS 2 = QNQ'

where Q = diag(w1,...,wq) with w; > -+ - > wy. Solutions take the form:

o1
W* :UQk S_27

where Qr = (q1,...,qx) and U is any orthogonal matrix of size k X k.



3 - Joint-Embedding : Also Requires Minimal Alignment

|
H‘lzi;l/_n n Z i o~ T [wa(Tl(XZ)) _fW(TQ(X”L))H%] )
1€n]
subject to 3 By [fw(r(xi)) faw(r(xi)) ] = Ti
1€n]

Let W™ (resp. \7\7*) solve the Joint-Embedding Problem for the clean data
X (resp. the corrupted data X). The following limit:

W* s W™

a.sS.

holds as m — +oo (infinite samples), if and only if the alignment satisfies

a > o'l




Supervised vs SSL
Key Result

Unlike supervised learning, both SSL paradigms require a minimal
alignment between augmentations and irrelevant features to
achieve asymptotic optimality with increasing sample size.

Supervised - Clean Supervised - Corrupted VICReg - Clean VICReg - Corrupted VICReg - Corrupted
Augmentation Unaligned Augmentation Unaligned Augmentation Unaligned Augmentation Unaligned Augmentation Aligned




Joint-Embedding or Reconstruction ?
It depends on the noise level !

Corollary
Let k; be the singular values of X (data features).
2 . ()‘f AP ) N i
QR ‘= Imax > = — 1), where 7= min
i€[k+1:d] \ 7 A i€ [k] \/1,{2 1 )\©
i

1—6 AP .
OTp = ieﬁl—%i{:d]]( 5 )\{,> , where 0 = min

2

e If max )\f < i (low noise), then ajg > agrc.
1€ k+1:d] 0
2

e If min )\Zr > i (high noise), then ajg < agc.
i€[k+1:d] 0



Joint-Embedding or Reconstruction ?
It depends on the noise level !

Key Result

- |f the data features dominate in magnitude :

P > aRC =P  Reconstruction is preferable

- |f the noise features dominate in magnitude :

JE

B <« oRC

=p Joint-embedding is preferable




Simulations with MNIST

Supervised Learning Joint-Embedding Reconstruction
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Experiments on ImageNet

Table 1: Linear probing topl accuracy scores of MAE, DINO, and SimCLR on ImageNet
with various corruptions [35] and relative performance drop from severity 1 to 5.

Pixelate Corruption Gaussian Noise Corruption Zoomblur Corruption

Method Sev. 1 Sev.3 Sev.5 |Drop (%)] Sev.1 Sev.3 Sev.5 |Drop (%)] Sev.1 Sev.3 Sev.5 |Drop (%)

BYOL  66.7 6L.3  58.7 12.0 672  63.1 564 16.1 70.1 670  63.8 9.0

DINO  68.7 649  60.2 19.4 67.6 624  59.0 12.7 60.4 672  64.9 6.5
MAE 64.9 523  46.8 27.9 61.6  46.7  44.8 973 641 584  51.3 20.0

As we Introduce increasingly strong noise into the data, joint-

embedding methods remain more robust : their performance
declines less than that of reconstruction methods.




Conclusion

o Favor reconstruction (autoencoders, language modeling, etc.)
when input features are semantically rich and the highest-
magnitude components align well with downstream tasks.

Example: NLF pre-processed data

O Favor joint-embedding (SICLR, CLIP, etc.) when input
features are dominated by high-magnitude irrelevant
components.

Example : raw sensorial recordings of the physical world

Thank you !



