

Provable Benefits of Latent Space Prediction for Self-Supervised Learning

NeurIPS 2025



M. Ibrahim



T. Biancalani



A. Regev

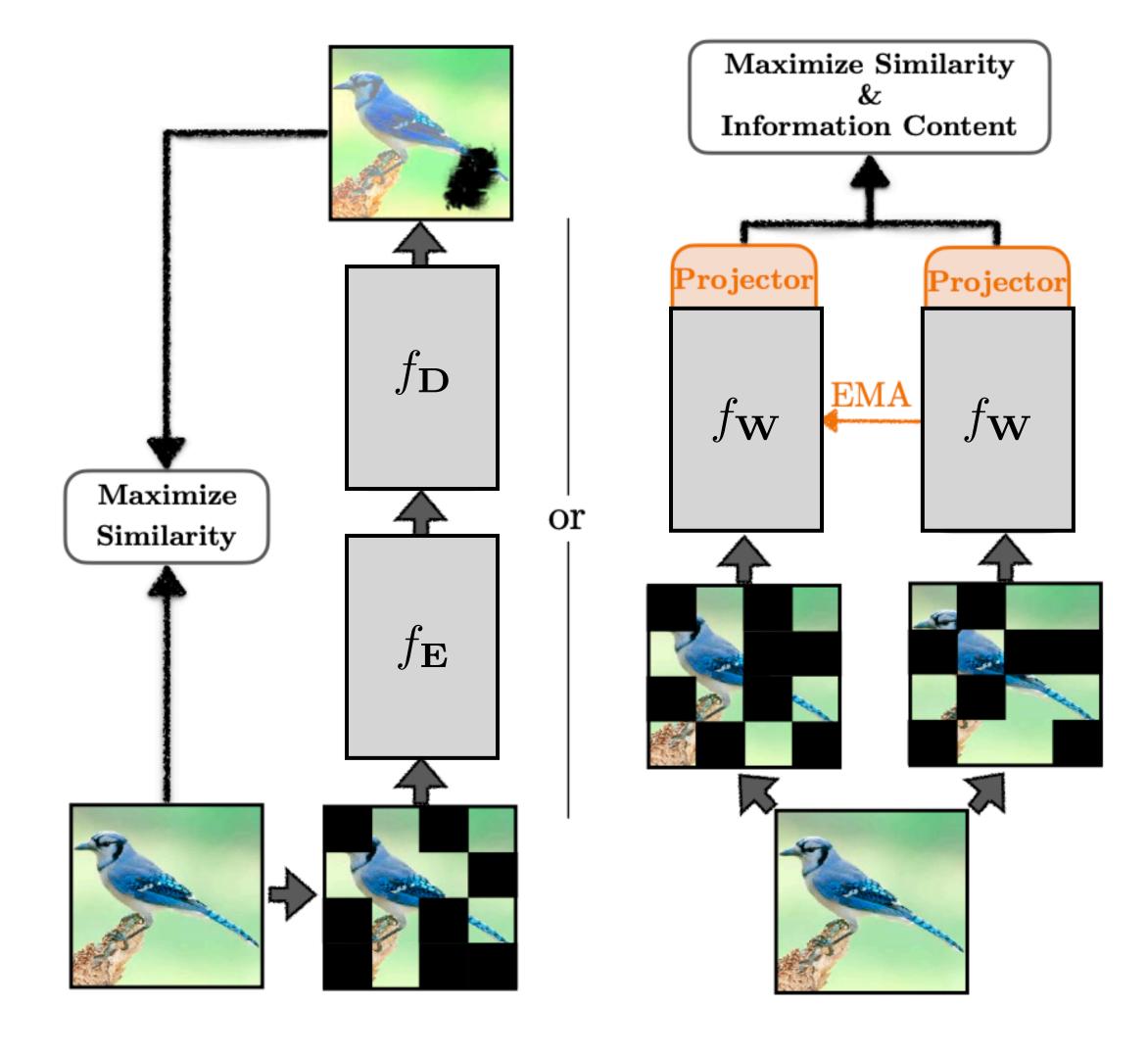


R. Balestriero









#### In modern ML, most modalities follow a common pattern

#### Step 1: Pretraining

- Learn data representations via a pretext task
- Train on very large diverse dataset
- Learn via view generation / invariances

#### Step 2: Fine-tuning

- Adapt the model to the target task
- Train with labeled data from target domain

#### In modern ML, most modalities follow a common pattern

#### Step 1: Pretraining

- Learn data representations via a pretext task
- Train on very large diverse dataset
- Learn via view generation / invariances

#### Step 2: Fine-tuning

- Adapt the model to the target task
- Train with labeled data from target domain

### Our focus today!

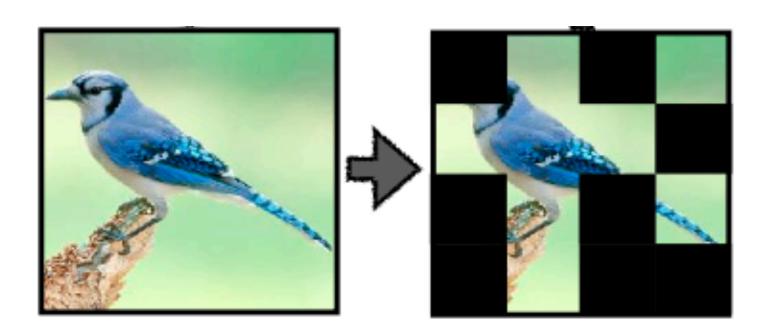
#### Step 1: Pretraining

- Learn data representations via a pretext task
- Train on very large diverse dataset
- Learn via view generation / invariances

### Our focus today!

View generation / Invariance is encoded via a data augmentation function:

$$au \sim \mathcal{T}$$



# How to go from view generation to pre-training?

Option A: Reconstruction Input-space prediction  $f_{\mathbf{D}}$ Ex : Auto-Encoder, LLMs Maximize **Similarity** Popular in NLP.  $f_{\mathbf{E}}$ 

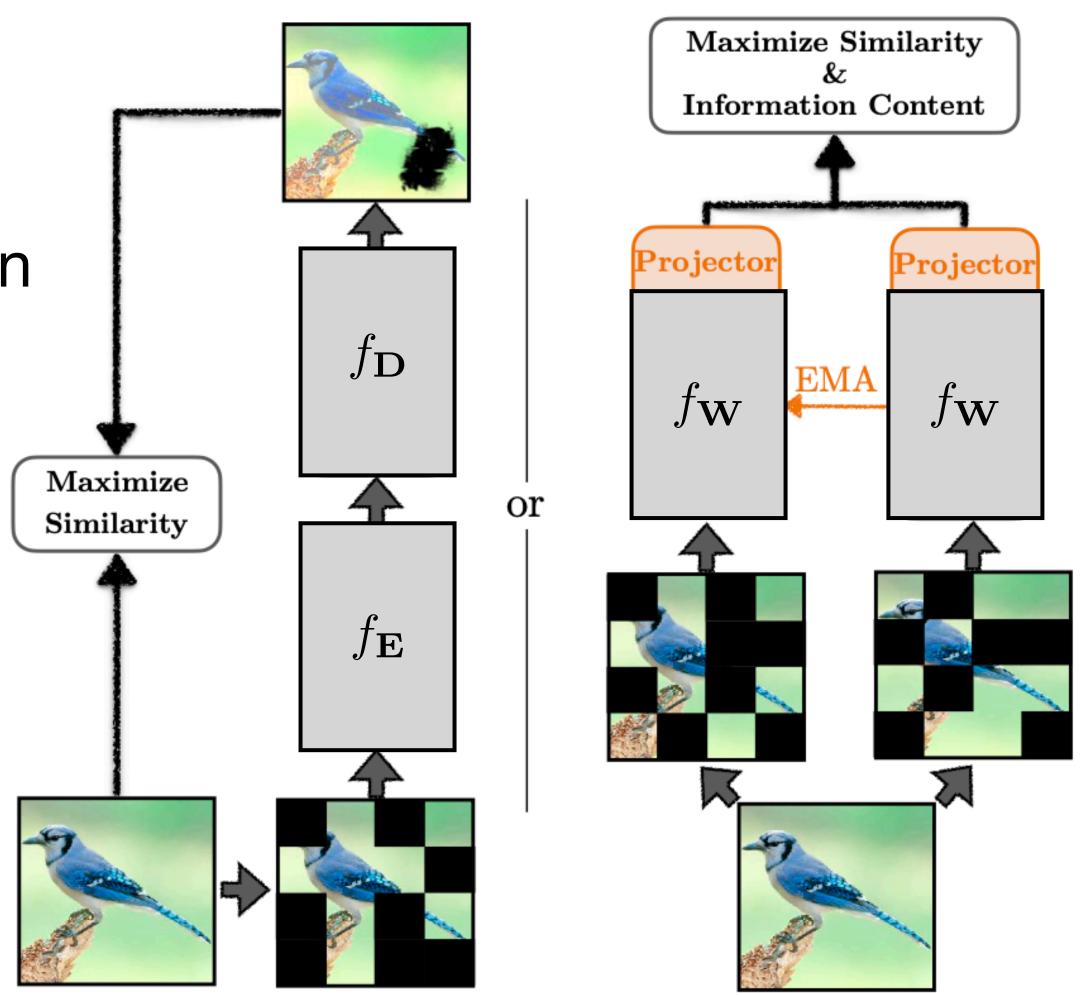
# How to go from view generation to pre-training?

Option A: Reconstruction

Input-space prediction

Ex : Auto-Encoder, LLMs

Popular in NLP.



Option B : Joint Embedding

Latent-space prediction

Ex: SimCLR, DINO, CLIP

Popular in computer vision.

# How to go from view generation to pre-training?

**Maximize Similarity** Option A: **Information Content** Reconstruction Input-space prediction Projector Projector  $f_{\mathbf{D}}$ Ex : Auto-Encoder,  $f_{\mathbf{W}}$  $f_{\mathbf{W}}$ LLMs Maximize or **Similarity** Popular in NLP.  $f_{\mathbf{E}}$ 

Option B : Joint Embedding

Latent-space prediction

Ex: SimCLR, DINO, CLIP

Popular in computer vision.

Which approach to choose for pretraining: Reconstruction or Joint Embedding?

# **Controlled Setting**

$$\forall \ i \in \llbracket n 
rbracket,$$

$$\widetilde{\mathbf{x}}_i = \mathbf{x}_i + \gamma_i$$

Data. 
$$\forall i \in \llbracket n 
rbracket, \quad \widetilde{\mathbf{x}}_i = \mathbf{x}_i + oldsymbol{\gamma}_i, \quad oldsymbol{\gamma}_i \sim \mathcal{N}(\mathbf{0}, oldsymbol{\Gamma})$$

Core Features (k first components)

#### Data Augmentation.

$$\tau(\mathbf{x}) = \mathbf{x} + \boldsymbol{\theta} + \alpha \boldsymbol{\gamma}, \ \boldsymbol{\theta} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Theta}), \ \boldsymbol{\gamma} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{\Gamma})$$

**Other Noise** 

**Data Noise** 

Aug. / Data Noise Alignment

Linear Models. For tractability

$$f_{\mathbf{V}}:\mathbf{x}\mapsto\mathbf{V}_{\mathbf{x}}$$

**Weight Matrix** 

We consider these 3 problems:

 ${\mathcal T}$ : data augmentation distribution

#### **Supervised Learning**

$$\min_{\mathbf{V}} \frac{1}{n} \sum_{i \in [n]} \mathbb{E}_{\tau \sim \mathcal{T}} \left[ \|\mathbf{y}_i - f_{\mathbf{V}}(\tau(\mathbf{x}_i))\|_2^2 \right].$$

#### Joint-Embedding (SSL)

$$\min_{\mathbf{W}} \frac{1}{n} \sum_{i \in [n]} \mathbb{E}_{\tau_1, \tau_2 \sim \mathcal{T}} \left[ \| f_{\mathbf{W}}(\tau_1(\mathbf{x}_i)) - f_{\mathbf{W}}(\tau_2(\mathbf{x}_i)) \|_2^2 \right] ,$$
subject to 
$$\frac{1}{n} \sum_{i \in [n]} \mathbb{E}_{\tau \sim \mathcal{T}} \left[ f_{\mathbf{W}}(\tau(\mathbf{x}_i)) f_{\mathbf{W}}(\tau(\mathbf{x}_i))^\top \right] = \mathbf{I}_k .$$

#### Reconstruction (SSL)

$$\min_{\mathbf{E}, \mathbf{D}} \quad \frac{1}{n} \sum_{i \in [n]} \mathbb{E}_{\tau \sim \mathcal{T}} \left[ \| \mathbf{x}_i - f_{\mathbf{D}}(f_{\mathbf{E}}(\tau(\mathbf{x}_i))) \|_2^2 \right].$$

We consider these 3 problems:

 ${\mathcal T}$ : data augmentation distribution

#### **Supervised Learning**

$$\min_{\mathbf{V}} \frac{1}{n} \sum_{i \in [n]} \mathbb{E}_{\tau \sim \mathcal{T}} \left[ \|\mathbf{y}_i - f_{\mathbf{V}}(\tau(\mathbf{x}_i))\|_2^2 \right].$$

#### Joint-Embedding (SSL)

$$\min_{\mathbf{W}} \frac{1}{n} \sum_{i \in [n]} \mathbb{E}_{\tau_1, \tau_2 \sim \mathcal{T}} \left[ \| f_{\mathbf{W}}(\tau_1(\mathbf{x}_i)) - f_{\mathbf{W}}(\tau_2(\mathbf{x}_i)) \|_2^2 \right] ,$$
subject to 
$$\frac{1}{n} \sum_{i \in [n]} \mathbb{E}_{\tau \sim \mathcal{T}} \left[ f_{\mathbf{W}}(\tau(\mathbf{x}_i)) f_{\mathbf{W}}(\tau(\mathbf{x}_i))^\top \right] = \mathbf{I}_k .$$

# What data augmentation is needed to recover optimal performances?

#### Reconstruction (SSL)

$$\min_{\mathbf{E}, \mathbf{D}} \quad \frac{1}{n} \sum_{i \in [n]} \mathbb{E}_{\tau \sim \mathcal{T}} \left[ \| \mathbf{x}_i - f_{\mathbf{D}}(f_{\mathbf{E}}(\tau(\mathbf{x}_i))) \|_2^2 \right].$$

# 1 - Supervised Learning: Consistency Regardless of Augmentations

$$\min_{\mathbf{V}} \ \frac{1}{n} \sum_{i \in [\![n]\!]} \mathbb{E}_{\tau \sim \mathcal{T}} \left[ \|\mathbf{y}_i - f_{\mathbf{V}}(\tau(\mathbf{x}_i))\|_2^2 \right] \ .$$
 Labels

# 1 - Supervised Learning: Consistency Regardless of Augmentations

$$\min_{\mathbf{V}} \ \frac{1}{n} \sum_{i \in [\![n]\!]} \mathbb{E}_{\tau \sim \mathcal{T}} \left[ \|\mathbf{y}_i - f_{\mathbf{V}}(\tau(\mathbf{x}_i))\|_2^2 \right] \ .$$
 Labels

#### Equivalence with Ridge regularization

$$\frac{1}{n} \sum_{i \in \llbracket n \rrbracket} \mathbb{E}_{\tau \sim \mathcal{T}} \left[ \|\mathbf{y}_i - \mathbf{V}\tau(\mathbf{x}_i)\|_2^2 \right] = \|\mathbf{V}\|_{\Sigma}^2 + \frac{1}{n} \sum_{i \in \llbracket n \rrbracket} \|\mathbf{y}_i - \mathbf{V}\mathbb{E}_{\tau \sim \mathcal{T}} \left[\tau(\mathbf{x}_i)\right]\|_2^2$$

where  $\|\mathbf{V}\|_{\mathbf{\Sigma}}^2 = \text{Tr}(\mathbf{V}\mathbf{\Sigma}\mathbf{V}^{\top})$  and

$$\mathbf{\Sigma} \coloneqq \frac{1}{n} \sum_{i} \mathbb{E}_{\tau \sim \mathcal{T}} \left[ \tau(\mathbf{x}_i) \tau(\mathbf{x}_i)^{\top} \right] - \mathbb{E}_{\tau \sim \mathcal{T}} \left[ \tau(\mathbf{x}_i) \right] \mathbb{E}_{\tau \sim \mathcal{T}} \left[ \tau(\mathbf{x}_i) \right]^{\top}. \tag{Cov}$$

# 1 - Supervised Learning: Consistency Regardless of Augmentations

$$\min_{\mathbf{V}} \ \frac{1}{n} \sum_{i \in [\![n]\!]} \mathbb{E}_{\tau \sim \mathcal{T}} \left[ \|\mathbf{y}_i - f_{\mathbf{V}}(\tau(\mathbf{x}_i))\|_2^2 \right] \ .$$
 Labels

#### **Proposition**

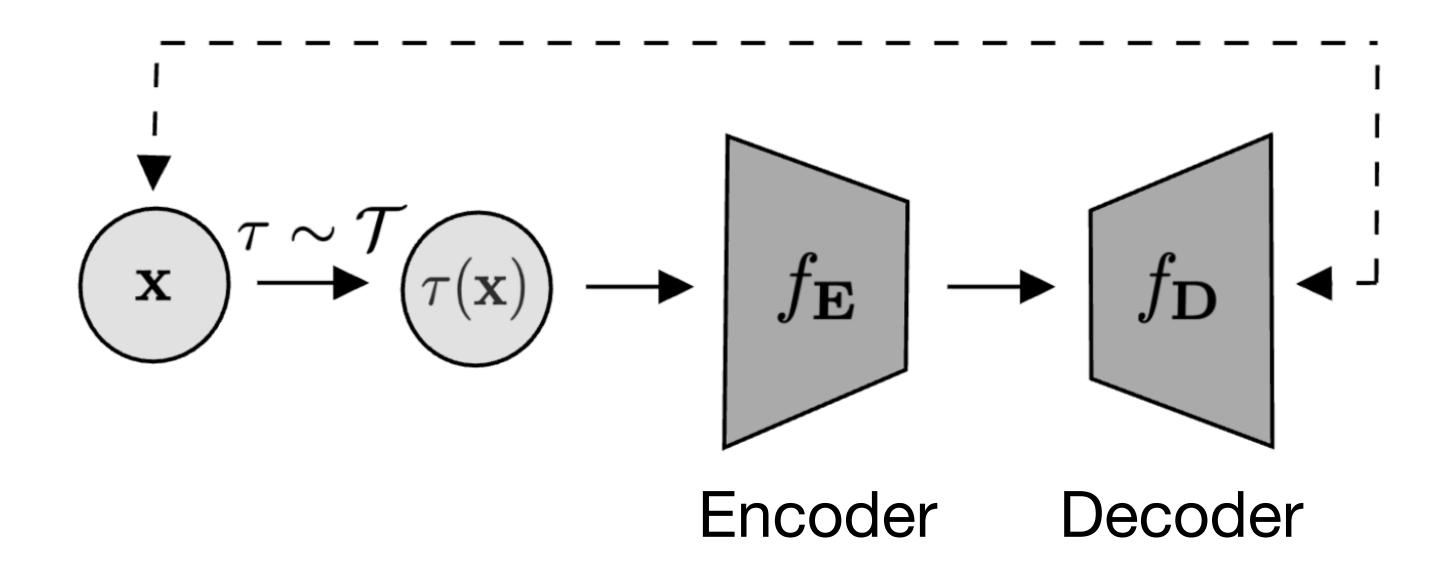
Let  $\mathbf{V}^*$  (resp.  $\widetilde{\mathbf{V}}^*$ ) solve the Supervised Learning problem with data augmentation  $\mathcal{T}(\alpha)$  for the clean data  $\mathbf{X}$  (resp. the corrupted data  $\widetilde{\mathbf{X}}$ ). Then:

$$\widetilde{\mathbf{V}}^{\star} \xrightarrow{\mathrm{a.s.}} \mathbf{V}^{\star}$$

holds almost surely as  $n \to +\infty$  (infinite samples) for any alignment  $\alpha$ .

#### 2 - Reconstruction

$$\min_{\mathbf{E}, \mathbf{D}} \quad \frac{1}{n} \sum_{i \in [n]} \mathbb{E}_{\tau \sim \mathcal{T}} \left[ \|\mathbf{x}_i - f_{\mathbf{D}}(f_{\mathbf{E}}(\tau(\mathbf{x}_i)))\|_2^2 \right].$$



#### 2 - Reconstruction

$$\min_{\mathbf{E}, \mathbf{D}} \quad \frac{1}{n} \sum_{i \in [n]} \mathbb{E}_{\tau \sim \mathcal{T}} \left[ \|\mathbf{x}_i - f_{\mathbf{D}}(f_{\mathbf{E}}(\tau(\mathbf{x}_i)))\|_2^2 \right].$$

Let  $\overline{\mathbf{x}}_i = \mathbb{E}_{\tau \sim \mathcal{T}}[\tau(\mathbf{x}_i)], \overline{\mathbf{X}} = (\overline{\mathbf{x}}_1, \dots, \overline{\mathbf{x}}_n)^{\top}$ . Consider the SVD

$$\frac{1}{n}\mathbf{X}^{\top}\overline{\mathbf{X}}\left(\frac{1}{n}\overline{\mathbf{X}}^{\top}\overline{\mathbf{X}}+\mathbf{\Sigma}\right)^{-\frac{1}{2}}=\mathbf{R}\mathbf{\Phi}\mathbf{P}^{\top},$$

where  $\mathbf{R}, \mathbf{P} \in \mathbb{R}^{d \times d}$  are orthogonal and  $\mathbf{\Phi} = \operatorname{diag}(\phi_1, \dots, \phi_d)$  with  $\phi_1 \geq \dots \geq \phi_d \geq 0$ . Then solutions take the form

$$\mathbf{E}^{\star} = \mathbf{T} \mathbf{P}_k^{ op} \left( rac{1}{n} \overline{\mathbf{X}}^{ op} \overline{\mathbf{X}} + \mathbf{\Sigma} 
ight)^{-rac{1}{2}}, \quad \mathbf{D}^{\star} = \mathbf{R}_k \mathbf{\Phi}_k \mathbf{T}^{-1},$$

where **T** is any invertible  $\mathbb{R}^{k \times k}$  matrix,  $\mathbf{P}_k$  and  $\mathbf{R}_k$  are the first k columns of **P** and  $\mathbf{R}$ , and  $\mathbf{\Phi}_k = \operatorname{diag}(\phi_1, \dots, \phi_k)$ .

# 2 - Reconstruction: Requires Minimal Alignment

$$\min_{\mathbf{E}, \mathbf{D}} \quad \frac{1}{n} \sum_{i \in \llbracket n \rrbracket} \mathbb{E}_{\tau \sim \mathcal{T}} \left[ \| \mathbf{x}_i - f_{\mathbf{D}} (f_{\mathbf{E}}(\tau(\mathbf{x}_i))) \|_2^2 \right] .$$

#### **Proposition**

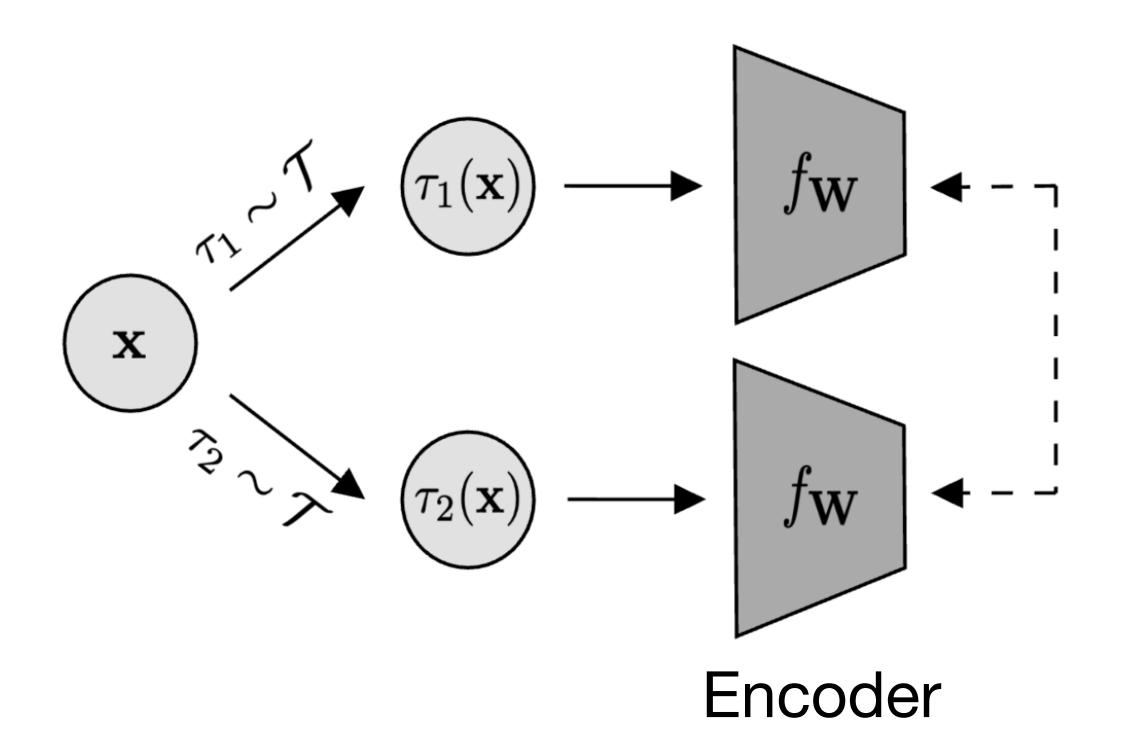
Let  $\mathbf{E}^*$  (resp.  $\widetilde{\mathbf{E}}^*$ ) be the optimal encoder of the Reconstruction Problem for the clean data  $\mathbf{X}$  (resp. the corrupted data  $\widetilde{\mathbf{X}}$ ). The following limit:

$$\widetilde{\mathbf{E}}^{\star} \xrightarrow{a.s.} \mathbf{E}^{\star}$$

holds as  $n \to +\infty$  (infinite samples), if and only if the alignment satisfies  $\alpha > \alpha^{\text{RC}}$ .

## 3 - Joint-Embedding

$$\min_{\mathbf{W}} \frac{1}{n} \sum_{i \in [n]} \mathbb{E}_{\tau_1, \tau_2 \sim \mathcal{T}} \left[ \| f_{\mathbf{W}}(\tau_1(\mathbf{x}_i)) - f_{\mathbf{W}}(\tau_2(\mathbf{x}_i)) \|_2^2 \right] ,$$
subject to 
$$\frac{1}{n} \sum_{i \in [n]} \mathbb{E}_{\tau \sim \mathcal{T}} \left[ f_{\mathbf{W}}(\tau(\mathbf{x}_i)) f_{\mathbf{W}}(\tau(\mathbf{x}_i))^\top \right] = \mathbf{I}_k .$$



# 3 - Joint-Embedding

$$\min_{\mathbf{W}} \frac{1}{n} \sum_{i \in \llbracket n \rrbracket} \mathbb{E}_{\tau_1, \tau_2 \sim \mathcal{T}} \left[ \| f_{\mathbf{W}}(\tau_1(\mathbf{x}_i)) - f_{\mathbf{W}}(\tau_2(\mathbf{x}_i)) \|_2^2 \right],$$
subject to
$$\frac{1}{n} \sum_{i \in \llbracket n \rrbracket} \mathbb{E}_{\tau \sim \mathcal{T}} \left[ f_{\mathbf{W}}(\tau(\mathbf{x}_i)) f_{\mathbf{W}}(\tau(\mathbf{x}_i))^{\top} \right] = \mathbf{I}_k.$$

Let  $\mathbf{S} \coloneqq \frac{1}{n} \sum_{i} \mathbb{E}_{\tau \sim \mathcal{T}} \left[ \tau(\mathbf{x}_{i}) \tau(\mathbf{x}_{i})^{\top} \right], \ \mathbf{G} \coloneqq \frac{1}{n} \sum_{i} \mathbb{E}_{\tau \sim \mathcal{T}} \left[ \tau(\mathbf{x}_{i}) \right] \mathbb{E}_{\tau \sim \mathcal{T}} \left[ \tau(\mathbf{x}_{i}) \right]^{\top}.$  Consider the eigendecomposition:

$$\mathbf{S}^{-rac{1}{2}}\mathbf{G}\mathbf{S}^{-rac{1}{2}} = \mathbf{Q}\mathbf{\Omega}\mathbf{Q}^{\mathsf{T}}$$

where  $\Omega = \text{diag}(\omega_1, \ldots, \omega_d)$  with  $\omega_1 \geq \cdots \geq \omega_d$ . Solutions take the form:

$$\mathbf{W}^{\star} = \mathbf{U} \mathbf{Q}_k^{ op} \mathbf{S}^{-rac{1}{2}},$$

where  $\mathbf{Q}_k = (\mathbf{q}_1, \dots, \mathbf{q}_k)$  and  $\mathbf{U}$  is any orthogonal matrix of size  $k \times k$ .

# 3 - Joint-Embedding: Also Requires Minimal Alignment

$$\min_{\mathbf{W}} \frac{1}{n} \sum_{i \in \llbracket n \rrbracket} \mathbb{E}_{\tau_1, \tau_2 \sim \mathcal{T}} \left[ \| f_{\mathbf{W}}(\tau_1(\mathbf{x}_i)) - f_{\mathbf{W}}(\tau_2(\mathbf{x}_i)) \|_2^2 \right],$$
subject to 
$$\frac{1}{n} \sum_{i \in \llbracket n \rrbracket} \mathbb{E}_{\tau \sim \mathcal{T}} \left[ f_{\mathbf{W}}(\tau(\mathbf{x}_i)) f_{\mathbf{W}}(\tau(\mathbf{x}_i))^\top \right] = \mathbf{I}_k.$$

Let  $\mathbf{W}^*$  (resp.  $\mathbf{W}^*$ ) solve the Joint-Embedding Problem for the clean data  $\mathbf{X}$  (resp. the corrupted data  $\widetilde{\mathbf{X}}$ ). The following limit:

$$\widetilde{\mathbf{W}}^{\star} \xrightarrow{\mathrm{a.s.}} \mathbf{W}^{\star}$$

holds as  $n \to +\infty$  (infinite samples), if and only if the alignment satisfies  $\alpha > \alpha^{\text{JE}}$ .

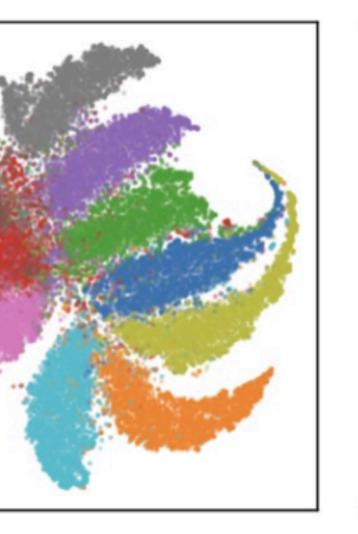
# Supervised vs SSL

### **Key Result**

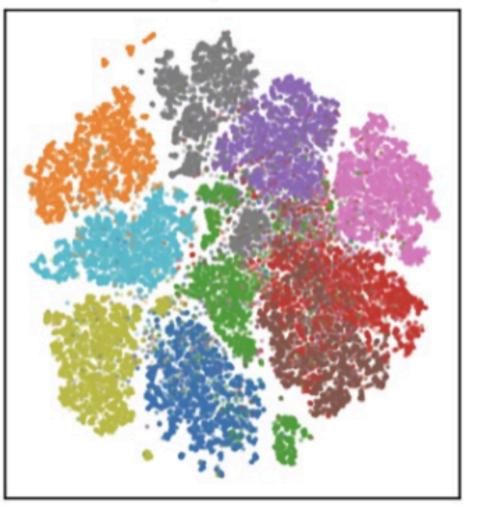
Unlike supervised learning, both SSL paradigms require a minimal alignment between augmentations and irrelevant features to achieve asymptotic optimality with increasing sample size.

Supervised - Clean **Augmentation Unaligned** 

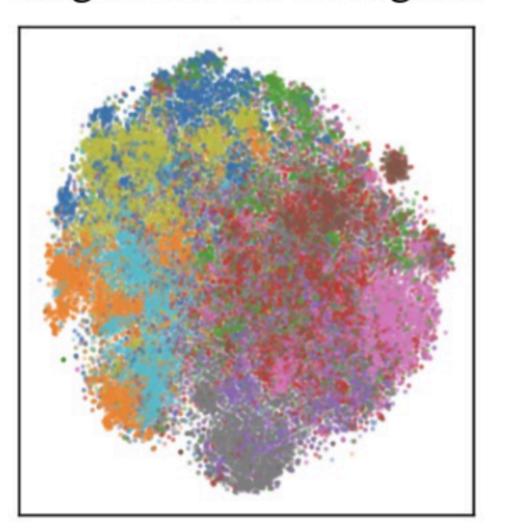
Supervised - Corrupted



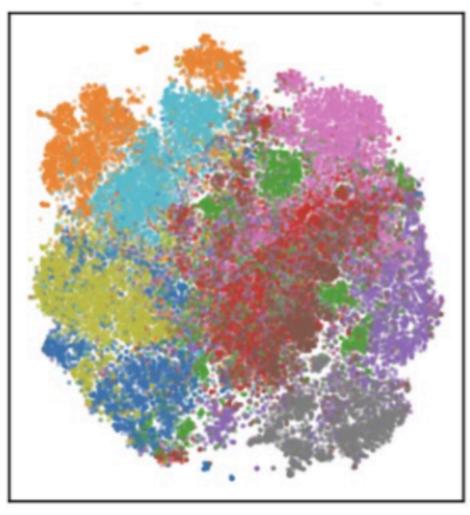
VICReg - Clean Augmentation Unaligned Augmentation Unaligned



VICReg - Corrupted **Augmentation Unaligned** 



VICReg - Corrupted **Augmentation Aligned** 



# Joint-Embedding or Reconstruction? It depends on the noise level!

#### Corollary

Let  $\kappa_i$  be the singular values of  $\boldsymbol{X}$  (data features).

$$\alpha_{\mathrm{RC}}^2 \coloneqq \max_{i \in \llbracket k+1:d \rrbracket} \left( \frac{\lambda_i^{\mathbf{\Gamma}}}{\eta^2} - \frac{\lambda_i^{\mathbf{\Theta}}}{\lambda_i^{\mathbf{\Gamma}}} - 1 \right), \quad \text{where} \quad \eta = \min_{i \in \llbracket k \rrbracket} \frac{\frac{1}{n} \kappa_i^2}{\sqrt{\frac{1}{n} \kappa_i^2 + \lambda_i^{\mathbf{\Theta}}}},$$

$$\alpha_{\text{JE}}^2 \coloneqq \max_{i \in [\![k+1:d]\!]} \left( \frac{1-\delta}{\delta} - \frac{\lambda_i^{\mathbf{\Theta}}}{\lambda_i^{\mathbf{\Gamma}}} \right), \quad \text{where} \quad \delta = \min_{i \in [\![k]\!]} \frac{\frac{1}{n} \kappa_i^2}{\frac{1}{n} \kappa_i^2 + \lambda_i^{\mathbf{\Theta}}}.$$

- If  $\max_{i \in [k+1:d]} \lambda_i^{\Gamma} < \frac{\eta^2}{\delta}$  (low noise), then  $\alpha_{\rm JE} > \alpha_{\rm RC}$ .
- If  $\min_{i \in [k+1:d]} \lambda_i^{\Gamma} > \frac{\eta^2}{\delta}$  (high noise), then  $\alpha_{\rm JE} < \alpha_{\rm RC}$ .

# Joint-Embedding or Reconstruction? It depends on the noise level!

### **Key Result**

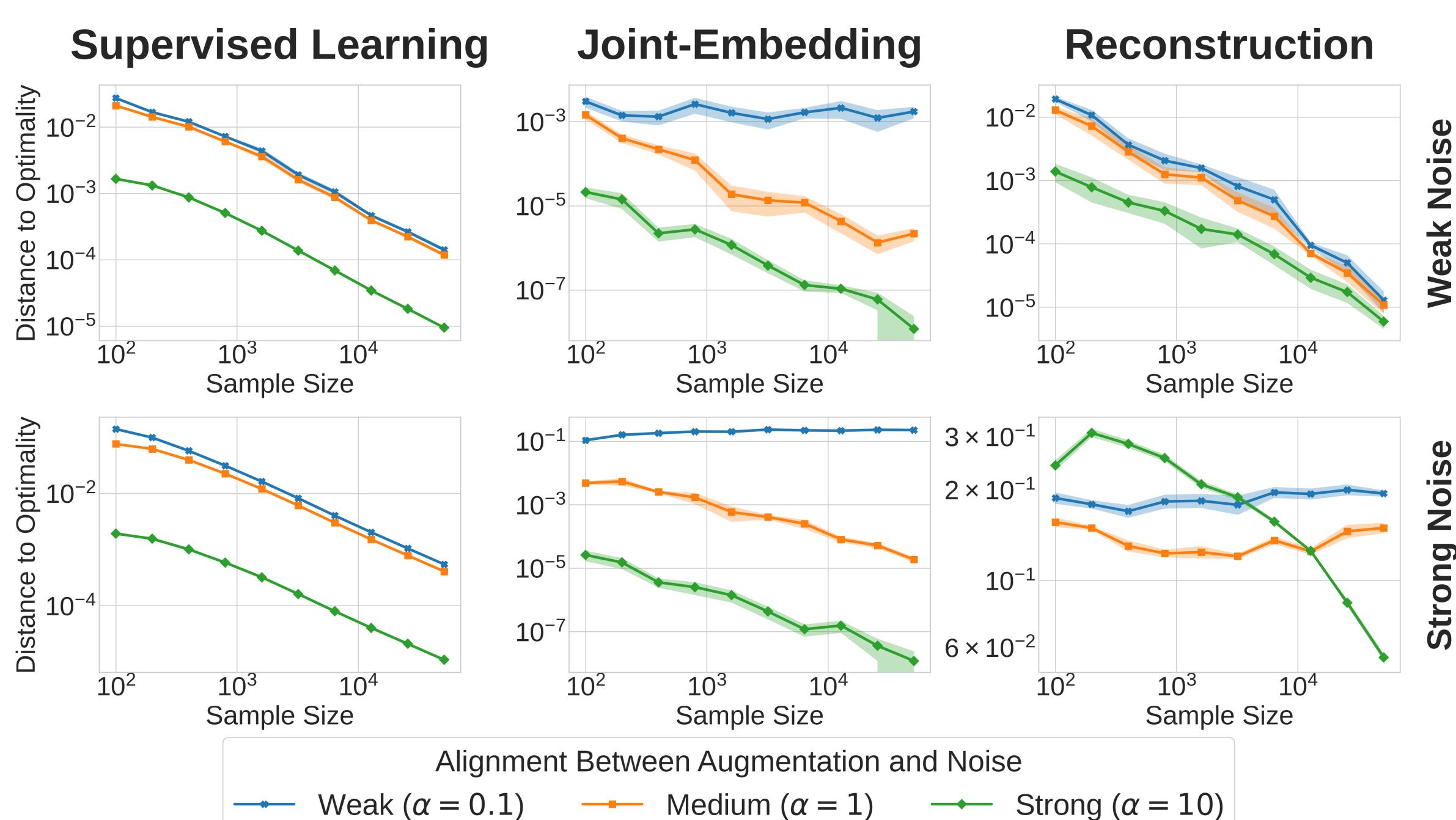
- If the data features dominate in magnitude:

$$\alpha^{\mathrm{JE}} > \alpha^{\mathrm{RC}}$$
 Reconstruction is preferable

- If the noise features dominate in magnitude :

$$\alpha^{\mathrm{JE}} < \alpha^{\mathrm{RC}}$$
  $\longrightarrow$  Joint-embedding is preferable

#### **Simulations with MNIST**



### **Experiments on ImageNet**

Table 1: Linear probing top1 accuracy scores of MAE, DINO, and SimCLR on ImageNet with various corruptions [35] and relative performance drop from severity 1 to 5.

|    |        | Pixelate Corruption |        |        |          | Gaussian Noise Corruption |        |        |          | Zoomblur Corruption |        |        |          |
|----|--------|---------------------|--------|--------|----------|---------------------------|--------|--------|----------|---------------------|--------|--------|----------|
|    | Method | Sev. 1              | Sev. 3 | Sev. 5 | Drop (%) | Sev. 1                    | Sev. 3 | Sev. 5 | Drop (%) | Sev. 1              | Sev. 3 | Sev. 5 | Drop (%) |
| JE | BYOL   | 66.7                | 61.3   | 58.7   | 12.0     | 67.2                      | 63.1   | 56.4   | 16.1     | 70.1                | 67.0   | 63.8   | 9.0      |
|    | DINO   | 68.7                | 64.9   | 60.2   | 12.4     | 67.6                      | 62.4   | 59.0   | 12.7     | 69.4                | 67.2   | 64.9   | 6.5      |
| RC | MAE    | 64.9                | 52.3   | 46.8   | 27.9     | 61.6                      | 46.7   | 44.8   | 27.3     | 64.1                | 58.4   | 51.3   | 20.0     |

As we introduce increasingly strong noise into the data, jointembedding methods remain more robust: their performance declines less than that of reconstruction methods.

#### Conclusion

Favor reconstruction (autoencoders, language modeling, etc.)
 when input features are semantically rich and the highest magnitude components align well with downstream tasks.

Example: NLP, pre-processed data

Favor joint-embedding (SimCLR, CLIP, etc.) when input features are dominated by high-magnitude irrelevant components.

Example: raw sensorial recordings of the physical world

#### Thank you!