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Setting

X € R*"*P

Today we look at what happens when p Is very large.

(Lots of genes etc...)



Space Is empty

Number n of points xi, ..., x, required for covering [0, 1|P by the balls
B(x;, 1):
[(p/2+1) pooo ( p \P/2
n2 P/2 - (27'('6) P
p |20 30 50 100 200

larger than the estimated
n | 39 | 45630 | 5.710'% | 4210%° number of particles
in the observable universe




Space Is empty

The density of data in local neighborhoods is too sparse to fit distributions.

n = 1000 data points
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All the mass is on the edge

The volume of a high-dimensional ball is
concentrated In its crust!

fraction in the crust

Ball: B,(0, r) o _

Crust: Cp(r) = B(0,r)\ Byp(0,0.99r) S S -

The fraction of the volume in the crust i : )
volume(Cy(r)) 1 _009P 4
volume(B,(0, r)) | 0 200 600 1000

. p
goes exponentially fast to 1!




All the mass is on the edge
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Figure: Mass of the standard Gaussian distribution g,(x) dx in the “bell”
B,o.001 = {x € RP: g,(x) > 0.001g,(0)} for increasing dimensions p.



Distances concentrate
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Figure: Histograms of the pairwise-distances between n = 100 points sampled
uniformly in the hypercube [0, 1]P, for p = 2,10, 100 and 1000.



Impact on Analysis

Nearest neighbors classifiers classify points based on the majority of classes among the
nearest points. In this simulation, we sample 100 points from a Gaussian distribution with
mean -5 and std 1 and 100 points from a Gaussian with mean 5 and std 1. Uniform noise in
[-5,5] is then added.

ncrease in Error with Higher Dimensions
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Impact on Analysis

Histogram of the spectrum Histogram of the spectrum Histogram of the spectrum
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Histogram of the spectral values of the empirical covariance matrix S of ¥ = Id,
with n = 1000 and p = n/2 (left), p = n (center), p = 2n (right).



To summarize

* |In high dimension, densities are very sparse.
* All the mass is on the edges / corners.

 The distance between all pairs of point becomes the same.

But ...

%

" ALWAYS HOPE, THEREIS),




In real life applications, data has structure.

High-dimensional data are usually concentrated around low-dimensional
structures reflecting the (relatively) small complexity of the systems
producing the data.

Reference : Christophe Giraud’s course.



