High-dimensional Gaussian graphical models on network-linked data (Li et al., JMLR 2020)

Hugues Van Assel 05/2021 Description of the model

Mean estimation error bound

Description of the model

Networks provide **relational information** that most traditional multivariate analysis methods are not designed to use.

This paper develops an analog to the widely used **Gaussian graphical model** for network-linked data.

We consider the problem of estimating a graphical model with **heterogeneous mean vectors** when a network connecting the observations is available¹.

¹Tianxi Li et al. "High-dimensional Gaussian graphical models on network-linked data.". In: *Journal of Machine Learning Research* 21.74 (2020), pp. 1–45.

$$X_i \sim \mathcal{N}(\mu_i, \Sigma), \quad \mu_i \in \mathbb{R}^p \quad \Sigma \in \mathcal{S}^p_+ \quad i = 1, 2, ..., n$$

In what follows : $M = (\mu_1, \mu_2, ..., \mu_n)^T \in \mathbb{R}^{n \times p}$ and $\Theta = \Sigma^{-1} \in \mathcal{S}^p_+$.

Log Likelihood:

$$I(M,\Theta) = \log \det(\Theta) - \frac{1}{n} (\Theta(X - M)^{T} (X - M))$$

Maximizing the above with respect to M leads to $\widehat{M} = X$.

A network connecting the observations is available.

Regularization : connected nodes should have similar mean vectors.

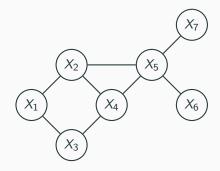
Given a network \mathcal{G} , we define:

$$A_{ij} = \begin{cases} 1 & \text{if } i \sim j \\ \mathcal{G} \\ 0 & \text{otherwise.} \end{cases}$$

$$D = \operatorname{diag}(d_1, d_2, \dots, d_n)$$

where $d_i = \sum_{j=1}^{n} A_{ij}$ is the degree of node *i*.

Example: nearest neighbor graph in spatial transcriptomics.



Graph Laplacian

The graph Laplacian is defined as follows :

$$L = D - A$$

For any vector $\mu \in \mathbb{R}^n$,

$$\mu^{T} L \mu = \sum_{i=1}^{n} \mu_{i}^{2} D_{ii} - 2 \sum_{i,j=1}^{n} \mu_{i} \mu_{j} A_{ij}$$
$$= \sum_{i=1}^{n} \mu_{i}^{2} \sum_{j=1}^{n} A_{ij} - 2 \sum_{i=1}^{n} \sum_{j=1}^{n} \mu_{i} \mu_{j} A_{ij}$$
$$= \sum_{i < j}^{n} (\mu_{i} - \mu_{j})^{2} A_{ij} = \sum_{\substack{i < j \\ \mathcal{G}}}^{n} (\mu_{i} - \mu_{j})^{2} A_{ij}$$

For $M = (\mu_1, \mu_2, ..., \mu_n)^T$, $tr(M^T L M) = \sum_{\substack{i \ge j \\ \mathcal{G}}} ||\mu_i - \mu_j||_2^2$.

The discrete graph approximates a low dimensional manifold \mathcal{M}^2 .

$$\operatorname{tr}(M^T L M) \xrightarrow{n \to \infty} \int_{\mathcal{M}} \|\nabla \mu(x)\|^2 dx$$

This quantity is called the Dirichlet Energy.

Applications in semi-supervised learning³.

 $^{^2}$ Matthias Hein, Jean-Yves Audibert, and Ulrike von Luxburg. "Graph laplacians and their convergence on random neighborhood graphs.". In: *Journal of Machine Learning Research* 8.6 (2007).

³Andreas Argyriou, Mark Herbster, and Massimiliano Pontil. "Combining graph laplacians for semi-supervised learning". In: *NIPS*. vol. 5. Citeseer. 2005, pp. 67–74.

Regularized Mean estimation problem:

$$\widehat{M}_{\alpha} = \underset{M}{\operatorname{argmin}} \|X - M\|_{F}^{2} + \alpha \operatorname{tr}(M^{T} \mathcal{L}_{S} M)$$

where $\mathcal{L}_{\mathcal{S}} = rac{D-A}{rac{1}{n}\sum_{i}d_{i}}$

The above problem has the closed form solution:

$$\widehat{M}_{\bullet j} = (I_n + \alpha \mathcal{L}_{\mathcal{S}})^{-1} X_{\bullet j}$$

Maximizing the log likelihood:

$$\begin{split} \widehat{\Theta}_{\alpha} &= \operatorname*{argmin}_{\substack{\Theta \in \mathcal{S}_{+}^{p}}} \log \det(\Theta) - \operatorname{tr}(\Theta \widehat{S}) \\ \end{split}$$
 where $\widehat{S}_{\alpha} &= \frac{1}{n} (X - \widehat{M}_{\alpha})^{T} (X - \widehat{M}_{\alpha})$

Difficulty in high dimension:

Let us consider M = 0 and $\Sigma = I_p$, the above problem is solved for $\Theta^* = \frac{X^T X}{n}$ $\nabla \left(-\frac{\gamma_{\max}(X)}{n} + \frac{\sqrt{p}}{n} + \frac{\sqrt{p}}{n} \right) = e^{-\frac{p^2}{2}}$

$$\mathbb{P}\left(\underbrace{\frac{\gamma_{\max}(X)}{\sqrt{n}}}_{\sqrt{\sigma_{\max}(\frac{X^T X}{n})}} \ge 1 + \sqrt{\frac{p}{n}} + \delta\right) \le e^{-n\frac{\delta^2}{2}}$$

Graphical lasso:⁴

$$\widehat{\Theta}_{\alpha,\lambda} = \underset{\Theta \in \mathcal{S}_{+}^{p}}{\operatorname{argmin}} \log \det(\Theta) - \operatorname{tr}(\Theta \widehat{S}) - \lambda \|\Theta\|_{1,off}$$

where $\widehat{S}_{\alpha} = \frac{1}{n} (X - \widehat{M})^T (X - \widehat{M})$

The above estimator is twice regularized.

Gaussian Graphical Model

$$X_i \perp X_j \mid \mathbf{X} / \{X_i, X_j\} \iff \Theta_{ij} = 0$$

Hence we make the assumption of a sparse conditional dependence graph.

⁴Pradeep Ravikumar et al. "High-dimensional covariance estimation by minimizing *l*1-penalized log-determinant divergence". In: *Electronic Journal of Statistics* 5 (2011), pp. 935–980.

Mean estimation error bound

$$\mathcal{L}_{\mathcal{S}} = U \Lambda U^{\mathcal{T}}$$
 where $\Lambda = \text{diag}(\tau_1, ..., \tau_n), \ \tau_1 \ge ... \ge \tau_n = 0$

Given a network A and a vector v, let $v = \sum_{i=1}^{n} \beta_i u_i$ be the expansion of v in th basis of eigenvectors of L_S .

v is cohesive on A with rate $\delta > 0$ if for all i:

(1)
$$\frac{\tau_i^2 |\beta_i|^2}{\|\beta\|_2^2} \le n^{-\frac{2(1+\delta)}{3}-1}$$

which implies:

(2)
$$\frac{\|\mathcal{L}_{\mathcal{S}}v\|_{2}^{2}}{\|v\|_{2}^{2}} \le n^{-\frac{2(1+\delta)}{3}}$$

A matrix M is cohesive on A if all of its columns are cohesive on A.

The mean matrix M is cohesive over the network A with rate δ . Moreover, $||M_j||_2^2 \le b^2 n$ for every j for some positive constant b.

Our goal is to obtain a bound on the difference between M and \widehat{M} under the above assumptions.

Error Bound Estimation of M

The optimization problem on M has a closed form solution:

$$\widehat{M}_{\bullet j} = (I_n + \alpha \mathcal{L}_{\mathcal{S}})^{-1} X_{\bullet j}$$

Let $\widehat{B} = U^T \widehat{M}$:

$$\widehat{B}_{\bullet j} = (I_n + \alpha \Lambda)^{-1} B_{\bullet j} + (I_n + \alpha \Lambda)^{-1} \underbrace{U^T E_{\bullet j}}_{\widetilde{E}_{\bullet j}}$$

 $\tilde{E}_{\bullet j}$ can be bounded in magnitude by $\mathcal{N}(0, \sigma^2 I)$ where $\sigma^2 = \max_j \Sigma_{jj}$. Let us now write:

$$\widehat{B}_{ij} - B_{ij} = \underbrace{\frac{\alpha \tau_i}{1 + \alpha \tau_i} B_{ij}}_{Q_i^j} + \underbrace{\frac{1}{1 + \alpha \tau_i} \widetilde{E}_{ij}}_{R_i^j}$$

and:

$$\left\|\widehat{B} - B\right\|_{2}^{2} \le \sum_{j} \left\|Q^{j}\right\|_{2}^{2} + \sum_{j} \left\|R^{j}\right\|_{2}^{2}$$

Error Bound Estimation of M

$$\sum_{j} \|Q^{j}\|_{2}^{2} = \sum_{j} \sum_{i} \frac{\alpha^{2} \tau_{i}^{2} |B_{ij}|^{2}}{(1 + \alpha \tau_{i})^{2}}$$
$$\leq \sum_{j} \left(\sum_{i \leq n-m_{A}} |B_{ij}|^{2} + \sum_{i > n-m_{A}} \frac{\alpha^{2} \tau_{i}^{2}}{(1 + \alpha \tau_{i})^{2}} |B_{ij}|^{2} \right)$$

where $m_A = \inf\{m : 0 \le m \le n-1, \tau_{n-m} \ge \frac{1}{\sqrt{m}}\}$ is the **effective dimension**.

$$\leq b^{2} \sum_{j} \left(\frac{n - m_{A}}{\tau_{n - m_{A}}^{2}} n^{-\frac{2(1 + \delta)}{3}} + \sum_{i > n - m_{A}} \left(\frac{\alpha}{1 + \alpha \tau_{n - 1}} \right)^{2} n^{-\frac{2(1 + \delta)}{3}} \right)$$

$$\leq b^{2} p \left((n - m_{A}) m_{A} n^{-\frac{2(1 + \delta)}{3}} + \frac{m_{A}}{(1 + \Delta)^{2}} + 1 \right)$$

where $\Delta = n^{\frac{1+o}{3}} \tau_{n-1}$ and $\alpha = n^{\frac{1+o}{3}}$.

Error Bound Estimation of *M*

$$\begin{split} \sum_{j} \|R^{j}\|_{2}^{2} &\leq \sum_{j} \left(\sum_{i \leq n-m_{A}} \left(\frac{1}{1+\alpha\tau_{i}} \right)^{2} |\tilde{E}_{ij}|^{2} + \sum_{i > n-m_{A}} \left(\frac{1}{1+\alpha\tau_{i}} \right)^{2} |\tilde{E}_{ij}|^{2} \right) \\ &\leq \frac{1}{\tau_{n-m_{A}}^{2}} n^{-\frac{2(1+\delta)}{3}} \sum_{i \leq n-m_{A}} \sum_{j} |\tilde{E}_{ij}|^{2} + \sum_{n-m_{A} < i < n} \sum_{j} \frac{|\tilde{E}_{ij}|^{2}}{(1+\Delta)^{2}} \\ &+ \sum_{j} |\tilde{E}_{nj}|^{2} \\ &\leq m_{A} n^{-\frac{2(1+\delta)}{3}} \sum_{i \leq n-m_{A}} \|\tilde{E}_{i.}\|_{2}^{2} + \sum_{n-m_{A} < i < n} \frac{\|\tilde{E}_{i.}\|_{2}^{2}}{(1+\Delta)^{2}} \\ &+ \|\tilde{E}_{n.}\|_{2}^{2} \end{split}$$

For $x \sim \mathcal{N}(\mathbf{0}, \Sigma)$, $\phi_{\max}(\Sigma)$ the largest eigenvalue of Σ , by applying a Lipschitz function of a sub-Gaussian random vector, we get:

$$\mathbb{P}\left(|\|\mathbf{x}\|_{2}^{2} - \operatorname{tr}(\Sigma)| > t\right) \leq 2\exp\left(-c\frac{t}{\phi_{\max}(\Sigma)}\right)$$

and by applying Bernstein's inequality with $t = n tr(\Sigma)$:

$$\mathbb{P}\left(\sum_{i}^{n} \|x_{i}\|_{2}^{2} > 2n \operatorname{tr}(\Sigma)\right) \leq 2\exp\left(-cnr(\Sigma)\right)$$

where $r(\Sigma) = \frac{\|\Sigma\|_F^2}{\|\Sigma\|_2^2}$ is the stable rank of Σ .

Concentration of norm multivariate Gaussian

$$\mathbb{P}\left(\sum_{i\leq n-m_A} \left\|\tilde{E}_{i\cdot}\right\|_2^2 > 2(n-m_A)p\sigma^2\right) \leq 2\exp\left(-c(n-m_A)r(\Sigma)\right)$$

$$\mathbb{P}\left(\sum_{n-m_A < i < n} \left\|\tilde{E}_{i.}\right\|_2^2 > 2m_A p\sigma^2\right) \le 2\exp\left(-cm_A r(\Sigma)\right)$$

$$\mathbb{P}\left(\left\|\tilde{E}_{n}\right\|_{2}^{2} > 2(n-m_{\mathcal{A}})p\sigma^{2}\right) \leq 2\exp\left(-c\frac{p\sigma^{2}}{\phi_{\max}(\Sigma)}\right)$$

$$\begin{split} \left\| \hat{M} - M \right\|_{F}^{2} &= \left\| \hat{B} - B \right\|_{F}^{2} \\ &\leq \sum_{j} \left\| Q^{j} \right\|_{2}^{2} + \sum_{j} \left\| R^{j} \right\|_{2}^{2} \\ &\leq (b^{2} + 2\sigma^{2}) p \left((n - m_{A}) m_{A} n^{-\frac{2(1 + \delta)}{3}} + \frac{m_{A}}{(1 + \Delta)^{2}} + 1 \right) \end{split}$$

with probability at least: $1 - 2\exp(-c(n - m_A)r(\Sigma)) - 2\exp(-cm_Ar(\Sigma)) - 2\exp(-c\frac{p\sigma^2}{\phi_{\max}(\Sigma)})$

Therefore the mean estimation error is vanishing with high probability as long as $m_A = o(n^{-\frac{2(1+\delta)}{3}})$ (for a lattice $m_A \le n^{\frac{2}{3}}$).

With the previous findings one can prove that, under classical hypothesis for graphical lasso, if m_A is bounded:

$$\left\|\widehat{\Theta} - \Theta\right\|_{F}^{2} \leq \propto 2(1 + \frac{8}{\rho})\sqrt{\frac{\log p}{n}}n^{\frac{\max(1-2\delta)}{6}}$$

In particular, if $\delta \geq \frac{1}{2}$, $\widehat{\Theta}$ is consistent as long as $\log p = o(n)$.

Therefore we have consistent estimations of M and Θ in high dimension under controlled effective dimension of the network and network-cohesion of M.

References

- Argyriou, Andreas, Mark Herbster, and Massimiliano Pontil. "Combining graph laplacians for semi-supervised learning". In: NIPS. Vol. 5. Citeseer. 2005, pp. 67–74.
- Hein, Matthias, Jean-Yves Audibert, and Ulrike von Luxburg. "Graph laplacians and their convergence on random neighborhood graphs.". In: *Journal of Machine Learning Research* 8.6 (2007).
- Li, Tianxi et al. "High-dimensional Gaussian graphical models on network-linked data.". In: *Journal of Machine Learning Research* 21.74 (2020), pp. 1–45.
 - Ravikumar, Pradeep et al. "High-dimensional covariance estimation by minimizing *l*1-penalized log-determinant divergence". In: *Electronic Journal of Statistics* 5 (2011), pp. 935–980.