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Description of the model



Context

Networks provide relational information that most traditional
multivariate analysis methods are not designed to use.

This paper develops an analog to the widely used Gaussian graphical
model for network-linked data.

We consider the problem of estimating a graphical model with
heterogeneous mean vectors when a network connecting the
observations is available1.

1Tianxi Li et al. “High-dimensional Gaussian graphical models on network-linked
data.”. In: Journal of Machine Learning Research 21.74 (2020), pp. 1–45.
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Model

Xi ∼N (µi ,Σ), µi ∈Rp Σ ∈ Sp+ i = 1,2, ...,n

In what follows : M = (µ1,µ2, ...,µn)T ∈Rn×p and Θ = Σ−1 ∈ Sp+.

Log Likelihood:

l(M,Θ) = logdet(Θ)− 1
n (Θ(X −M)T (X −M))

Maximizing the above with respect to M leads to M̂ = X .

A network connecting the observations is available.

Regularization : connected nodes should have similar mean vectors.
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Network-linked data

Given a network G, we define:

Aij =
{

1 if i ∼
G

j

0 otherwise.

D = diag(d1,d2, ...,dn)

where di =
∑n

j Aij is the degree of
node i .

Example: nearest neighbor graph in
spatial transcriptomics.

X1

X2

X3

X4

X5

X6

X7

4



Graph Laplacian

The graph Laplacian is defined as follows :

L = D−A

For any vector µ ∈Rn,

µTLµ=
n∑

i=1
µ2i Dii − 2

n∑
i ,j=1

µiµjAij

=
n∑

i=1
µ2i

n∑
j=1

Aij − 2
n∑

i=1

n∑
j=1

µiµjAij

=
n∑
i<j

(µi −µj)2Aij =
∑
i∼
G
j
(µi −µj)2

For M = (µ1,µ2, ...,µn)T , tr(MTLM) =
∑

i∼
G
j ‖µi −µj‖

2
2.
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Regularization on Manifold

The discrete graph approximates a low dimensional manifoldM2.

tr(MTLM) n−→∞−−−−→
∫
M
‖∇µ(x)‖2 dx

This quantity is called the Dirichlet Energy.

Applications in semi-supervised learning3.

2Matthias Hein, Jean-Yves Audibert, and Ulrike von Luxburg. “Graph laplacians and
their convergence on random neighborhood graphs.”. In: Journal of Machine Learning
Research 8.6 (2007).
3Andreas Argyriou, Mark Herbster, and Massimiliano Pontil. “Combining graph
laplacians for semi-supervised learning”. In: NIPS. vol. 5. Citeseer. 2005, pp. 67–74.
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Fitting the model

Regularized Mean estimation problem:

M̂α = argmin
M
‖X −M‖2F +αtr(MTLSM)

where LS = D−A
1
n
∑

i di

The above problem has the closed form solution:

M̂•j = (In +αLS)−1X•j
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Covariance estimation in high dimension

Maximizing the log likelihood:

Θ̂α = argmin
Θ∈Sp+

logdet(Θ)− tr(ΘŜ)

where Ŝα = 1
n (X − M̂α)T (X − M̂α)

Difficulty in high dimension:

Let us consider M = 0 and Σ = Ip , the above problem is solved for
Θ∗ = XTX

n

P

(
γmax(X )√

n︸       ︷︷       ︸√
σmax(X

T X
n )

≥ 1+
√

p
n + δ

)
≤ e−n

δ2
2
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Covariance estimation in high dimension

Graphical lasso:4

Θ̂α,λ = argmin
Θ∈Sp+

logdet(Θ)− tr(ΘŜ)−λ‖Θ‖1,off

where Ŝα = 1
n (X − M̂)T (X − M̂)

The above estimator is twice regularized.

Gaussian Graphical Model
Xi ⊥⊥ Xj | X/{Xi ,Xj} ⇐⇒ Θij = 0

Hence we make the assumption of a sparse conditional dependence graph.

4Pradeep Ravikumar et al. “High-dimensional covariance estimation by minimizing
`1-penalized log-determinant divergence”. In: Electronic Journal of Statistics 5
(2011), pp. 935–980.
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Mean estimation error bound



Definition network-cohesive

LS = UΛUT where Λ = diag(τ1, ..., τn), τ1 ≥ ...≥ τn = 0

Given a network A and a vector v , let v =
∑n

i=1βiui be the expansion of
v in th basis of eigenvectors of LS .

v is cohesive on A with rate δ > 0 if for all i :

(1) τ2i |βi |2

‖β‖22
≤ n−

2(1+δ)
3 −1

which implies:

(2) ‖LSv‖22
‖v‖22

≤ n−
2(1+δ)

3

A matrix M is cohesive on A if all of its columns are cohesive on A.
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Assumption

The mean matrix M is cohesive over the network A with rate δ.
Moreover, ‖M.j‖22 ≤ b2n for every j for some positive constant b.

Our goal is to obtain a bound on the difference between M and M̂ under
the above assumptions.
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Error Bound Estimation of M

The optimization problem on M has a closed form solution:

M̂•j = (In +αLS)−1X•j

Let B̂ = UT M̂:

B̂•j = (In +αΛ)−1B•j + (In +αΛ)−1UTE•j︸   ︷︷   ︸
Ẽ•j

Ẽ•j can be bounded in magnitude by N (0,σ2I) where σ2 = maxj Σjj .

Let us now write:

B̂ij −Bij = ατi
1+ατi

Bij︸         ︷︷         ︸
Qj
i

+ 1
1+ατi

Ẽij︸        ︷︷        ︸
R j
i

and: ∥∥∥B̂−B
∥∥∥2
2
≤
∑
j

∥∥Qj∥∥2
2 +
∑
j

∥∥R j∥∥2
2
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Error Bound Estimation of M

∑
j

∥∥Qj∥∥2
2 =

∑
j

∑
i

α2τ2i |Bij |2

(1+ατi )2

≤
∑
j

 ∑
i≤n−mA

|Bij |2 +
∑

i>n−mA

α2τ2i
(1+ατi )2

|Bij |2


where mA = inf{m : 0≤m ≤ n− 1, τn−m ≥
1√
m
} is the effective dimension.

≤ b2
∑
j

n−mA
τ2n−mA

n−
2(1+δ)

3 +
∑

i>n−mA

(
α

1+ατn−1

)2
n−

2(1+δ)
3


≤ b2p

(
(n−mA)mAn−

2(1+δ)
3 + mA

(1+∆)2 + 1
)

where ∆ = n
1+δ
3 τn−1 and α= n

1+δ
3 .
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Error Bound Estimation of M

∑
j

∥∥R j∥∥2
2 ≤

∑
j

 ∑
i≤n−mA

(
1

1+ατi

)2
|Ẽij |2 +

∑
i>n−mA

(
1

1+ατi

)2
|Ẽij |2


≤ 1
τ2n−mA

n−
2(1+δ)

3
∑

i≤n−mA

∑
j
|Ẽij |2 +

∑
n−mA<i<n

∑
j

|Ẽij |2

(1+∆)2

+
∑
j
|Ẽnj |2

≤mAn−
2(1+δ)

3
∑

i≤n−mA

∥∥Ẽi .
∥∥2
2 +

∑
n−mA<i<n

∥∥Ẽi .
∥∥2
2

(1+∆)2

+
∥∥Ẽn.

∥∥2
2
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Concentration of norm multivariate Gaussian

For x ∼N (0,Σ), φmax(Σ) the largest eigenvalue of Σ, by applying a
Lipschitz function of a sub-Gaussian random vector, we get:

P

(
|‖x‖22− tr(Σ)|> t

)
≤ 2exp

(
−c t

φmax(Σ)

)
and by applying Bernstein’s inequality with t = ntr(Σ):

P

( n∑
i
‖xi‖22 > 2ntr(Σ)

)
≤ 2exp(−cnr(Σ))

where r(Σ) = ‖Σ‖2F
‖Σ‖22

is the stable rank of Σ.
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Concentration of norm multivariate Gaussian

P

 ∑
i≤n−mA

∥∥Ẽi .
∥∥2
2 > 2(n−mA)pσ2

≤ 2exp(−c(n−mA)r(Σ))

P

 ∑
n−mA<i<n

∥∥Ẽi .
∥∥2
2 > 2mApσ2

≤ 2exp(−cmAr(Σ))

P

(∥∥Ẽn.
∥∥2
2 > 2(n−mA)pσ2

)
≤ 2exp

(
−c pσ2

φmax(Σ)

)
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Error bounds on M

∥∥∥M̂ −M
∥∥∥2
F

=
∥∥∥B̂−B

∥∥∥2
F

≤
∑
j

∥∥Qj∥∥2
2 +
∑
j

∥∥R j∥∥2
2

≤ (b2 + 2σ2)p
(

(n−mA)mAn−
2(1+δ)

3 + mA
(1+∆)2 + 1

)
with probability at least:
1− 2exp(−c(n−mA)r(Σ))− 2exp(−cmAr(Σ))− 2exp

(
−c pσ2

φmax(Σ)

)
Therefore the mean estimation error is vanishing with high probability as
long as mA = o(n−

2(1+δ)
3 ) (for a lattice mA ≤ n

2
3 ).
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Error bounds on Σ

With the previous findings one can prove that, under classical hypothesis
for graphical lasso, if mA is bounded:∥∥∥Θ̂−Θ

∥∥∥2
F
≤∝ 2(1+ 8

ρ
)
√

logp
n n

max(1−2δ)
6

In particular, if δ ≥ 1
2 , Θ̂ is consistent as long as logp = o(n).

Therefore we have consistent estimations of M and Θ in high
dimension under controlled effective dimension of the network and
network-cohesion of M.
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