

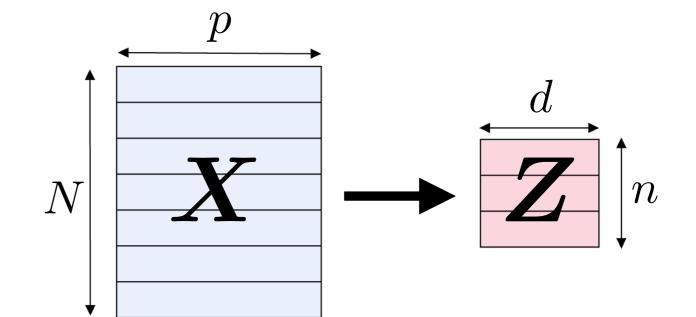
Interpolating between Clustering and Dimensionality Reduction with Gromov-Wasserstein

kernels

Hugues Van Assel*, Cédric Vincent-Cuaz*, Titouan Vayer, Rémi Flamary, Nicolas Courty *Equal contribution

The goal is to perform joint clustering and dimensionality reduction (DR).

To do so, we formulate DR as a graph matching problem and augment this objective with Gromov-Wasserstein optimal transport.



Graph matching as common objective for traditional DR methods

$$\min_{\boldsymbol{Z}} \sum_{(i,j)\in \llbracket N\rrbracket^2} L([\boldsymbol{C}_X]_{ij}, [\boldsymbol{C}_Z]_{ij}).$$

 C_X and C_Z are affinity matrices defined from X and Z resp.

	$oxed{L}$	$oldsymbol{C}_X$	$oldsymbol{C}_Z$
PCA	L_2	$oldsymbol{X}oldsymbol{X}^ op$	$oldsymbol{Z}oldsymbol{Z}^ op$
KPCA	L_2	$oldsymbol{K}_X$	$oldsymbol{Z}oldsymbol{Z}^ op$
NE	$L_{ m KL}$	$oldsymbol{K}_X$	$oldsymbol{K}_Z$

Gromov-Wasserstein discrepancy computes the **best coupling** between affinities

$$\operatorname{GW}_{L}(\boldsymbol{C}_{X},\boldsymbol{h}_{X},\boldsymbol{C}_{Z},\boldsymbol{h}_{Z}) := \min_{\boldsymbol{T} \in \mathcal{U}(\boldsymbol{h}_{X},\boldsymbol{h}_{Z})} \sum_{(i,j) \in \llbracket N \rrbracket^{2}} \sum_{(k,l) \in \llbracket n \rrbracket^{2}} L([\boldsymbol{C}_{X}]_{ij},[\boldsymbol{C}_{Z}]_{kl}) T_{ik} T_{jl}$$

Semi-Relaxed GW relaxes the second marginal

$$\operatorname{srGW}_L(\boldsymbol{C}_X, \boldsymbol{h}_X, \overline{\boldsymbol{C}}) := \min_{\overline{\boldsymbol{h}} \in \Sigma_n} \operatorname{GW}_L(\boldsymbol{C}_X, \boldsymbol{h}_X, \overline{\boldsymbol{C}}, \overline{\boldsymbol{h}}).$$

If $U \mapsto \text{vec}(U)^{\top} (C_X \otimes C_X) \text{vec}(U)$ is <u>convex</u> on $\mathcal{U}(h_X, h_X)$, then

 $\min_{\overline{\boldsymbol{C}} \in \mathbb{R}^{n \times n}} \operatorname{srGW}_L(\boldsymbol{C}_X, \boldsymbol{h}_X, \overline{\boldsymbol{C}})$ (srGWB)

n = 10

9

with $L = L_2$ admits scaled membership matrices as optimum for T.

ARI	spectral	[C]	lust	tering	-)
-----	----------	-----	------	--------	--------

	srGWI	srGWB
MNIST	29.7(1.9)	32.6(1.8)
F-MNIST	26.1(0.0)	39.5(0.3)
COIL	18.1(0.2)	51.0 (1.7)

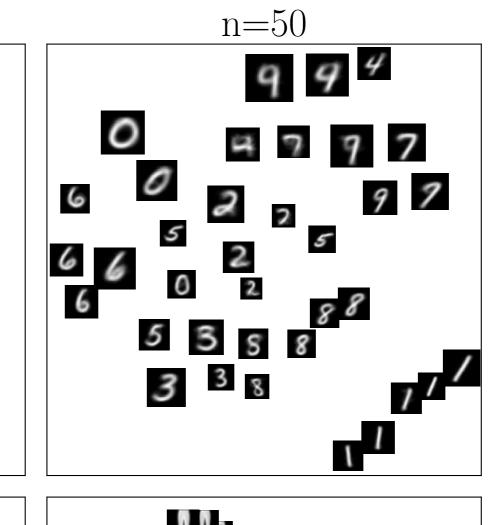
n = 100

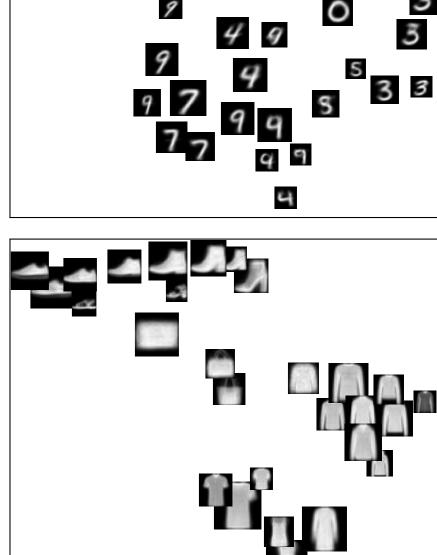
GWDR Model

 $\min_{oldsymbol{Z} \in \mathbb{R}^{n imes d}} \operatorname{srGW}_L(oldsymbol{C}_X, oldsymbol{h}_X, oldsymbol{C}_Z)$

- Clustering provided by the OT plan is learned jointly with the embeddings and can adapt to the varying cluster sizes.
- Can be seen as a constrained srGW barycenter problem.
- Flexibly adapts to any DR method by choosing the corresponding affinities.

3





$$L_2(x,y) := (x-y)^2$$

$$L_{\mathrm{KL}}(x,y) := x \log(x/y) - x + y$$

$$\operatorname{srGWI} := \operatorname{srGW}_L(\boldsymbol{C}_X, \boldsymbol{h}_X, \boldsymbol{I}_n)$$

$$\mathcal{U}(oldsymbol{h}_X,oldsymbol{h}_Z) := \{oldsymbol{T} \geq oldsymbol{0}, oldsymbol{T} oldsymbol{1} = oldsymbol{h}_X, oldsymbol{T}^ op oldsymbol{1} = oldsymbol{h}_Z\}$$

$$\Sigma_n := \{ \boldsymbol{h} \geq \boldsymbol{0}, \boldsymbol{h}^{\top} \boldsymbol{1} = \boldsymbol{1} \}$$

ARI = Adjusted Rand Index

