

**BROWN** 

## A Graph Matching Approach to Balanced Data Sub-Sampling for SSL



Hugues Van Assel, Randall Balestriero

**Problem:** ensuring that each concept is represented by a similar number of samples is crucial for SSL performance. Balanced data sub-sampling aims to extract a subset of data where concepts are evenly represented. **Existing work:** common approaches rely on clustering algorithms (k-means, k-medoids etc.) and their centroids. However, these centroids favor dominant concepts and are not suited for balanced data-subsampling.



**Intuition:** our method selects points with low pairwise similarities to make the selected subset as diverse as possible.

$$\min_{\mathbf{T}\mathbf{1}_{N}=\mathbf{1}_{n},\ \mathbf{T}\geq 0} \ \mathcal{L}(\mathbf{T}) := \sum_{ijkl} ([\mathbf{D}_{n}]_{ij} - [\mathbf{S}_{x}]_{kl})^{2} T_{ik} T_{jl} + \gamma \operatorname{KL}\left(\mathbf{T}^{\top}\mathbf{1}_{n} \middle\| \frac{n}{N}\mathbf{1}_{N}\right)$$

Select n points among N

**Graph matching term** 

**Ensure diversity** 

$$[\mathbf{D}_n]_{ij} = \begin{cases} 1 & \text{if } i = j \text{ (maximum similarity)}, \\ -1 & \text{if } i \neq j \text{ (minimum similarity)}. \end{cases} & [\mathbf{S}_{\mathbf{x}}]_{ij} = \langle \tilde{\mathbf{x}}_i, \tilde{\mathbf{x}}_j \rangle, \text{ where } \tilde{\mathbf{x}}_i = \frac{\mathbf{x}_i}{\|\mathbf{x}_i\|_2} \end{cases}$$

Until convergence:

Mirror descent

$$\mathbf{K}^{(i)} \leftarrow \exp\left(\nabla_{\mathbf{T}} \mathcal{L}(\mathbf{T}^{(i)}) - \varepsilon \log(\mathbf{T}^{(i)})\right)$$
$$\mathbf{T}^{(i+1)} \leftarrow \operatorname{diag}\left(\mathbf{1}_{n} \oslash (\mathbf{K}^{(i)} \mathbf{1}_{N})\right) \mathbf{K}^{(i)}$$

- ◆ Complexity O(N) in time and complexity.
- ♦ About 100 iterations to reach convergence.
- ♦ GPU friendly.

**Experiments:** balancing input data improves the performances of SimCLR when evaluated on a balanced test dataset.

| Dataset   | $\alpha$ | $\overline{n}$ | k-Means | k-Medoid | DASSOT      |
|-----------|----------|----------------|---------|----------|-------------|
| CIFAR-10  | 1.2      | 5000           | 81.8    | 81.9     | 82.7        |
| -         | 1.2      | 10000          | 85.7    | 85.5     | 85.5        |
| -         | 1.5      | 5000           | 59.3    | 58.7     | <b>62.9</b> |
| -         | 1.5      | 10000          | 71.6    | 71.6     | <b>73.2</b> |
| CIFAR-100 | 1.2      | 5000           | 55.2    | 55.5     | 56.2        |
| _         | 1.2      | 10000          | 60.8    | 61.3     | 61.1        |
| -         | 1.5      | 5000           | 43.9    | 44.2     | 48.6        |
| _         | 1.5      | 10000          | 51.9    | 52.7     | 52.7        |

strength of Imbalance