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Abstract

Real-world datasets often display inherent imbalances in the distribution of classes
or concepts. Recent studies indicate that such imbalances can lead to suboptimal
performances of Self-Supervised Learning (SSL) models when evaluated across
the full spectrum of concepts. To address this issue, we propose a data curation
method that automatically selects a balanced subset of the data. This problem is
approached as a graph matching task, where the goal is to identify a data subset
that is most distinct in terms of pairwise similarities. We achieve this by mapping
an isolated graph onto the similarity graph of the input data, leveraging the optimal
transport semi-unbalanced Gromov-Wasserstein problem. We demonstrate that
this problem can be solved with linear complexity and is well-suited for GPU
acceleration. The effectiveness of our method is validated through experiments on
small datasets, setting the stage for future exploration on larger-scale problems.

1 Introduction

Data curation is a critical component in modern Self-Supervised Learning (SSL) workflows [4].
This process typically includes the preparation and refinement of the training data to enhance the
model’s performance and mitigate existing biases. A recent study [15] emphasized three critical
factors for constructing an effective dataset in SSL: dataset size, diversity, and balance. Among
these, achieving balance is particularly challenging yet crucial. Commonly used SSL datasets are
generally balanced in the sense that each concept or class label is represented by an equal number of
samples. This contrasts with real-world data where concepts often follow a long-tailed power-law
distribution [12]. Research has shown that training SSL models on long-tailed datasets dominated by
a few common concepts leads to significant performance drops [10], which challenges the broader
application of these methods. Ensuring a balanced distribution of concepts (or classes) in the training
data is therefore essential to mitigate this bias. Most existing balancing techniques, however, rely
heavily on some form of labeling or supervision [17, 3]. Since this level of supervision is typically
unavailable in most real world scenarios, there is a pressing need for the development of unsupervised
or minimally supervised approaches to attain balanced datasets. Addressing this challenge is the
primary objective of this work.

Background. A common method for balanced data subsampling is to use clustering algorithms,
where the subsampled data can be represented by centroids from k-means or k-medoids for instance.
However, it is well known that centroids are biased toward dominant concepts, as these concepts tend
to occupy more centroids than less frequent ones. A significant result by [18] demonstrates that in
high dimensions, k-means centroids asymptotically follow the data distribution, thereby preserving
the same imbalance. Some approaches have been proposed to counteract this bias. For example, [5]
introduced radius upper bounds on the centroids, while [15] suggested a multi-stage clustering and
resampling scheme. In this work, we take a different path by not relying on clustering. In fact, our

NeurIPS 2024 Workshops on Self-supervised Learning - Theory and Practice.



0.00.5 0.5

0.0

0.5

0.5

Uniform Sampling

data points
subsampled points

0.00.5 0.5

K-Medoids

0.00.5 0.5

DASSOT

0.0 0.5 1.0
Cluster

0

5

10

15

20

N
um

be
r o

f P
oi

nt
s

Subsampled Points per Cluster

0 1 2
Cluster

0

5

10

15

20

N
um

be
r o

f P
oi

nt
s

Subsampled Points per Cluster

0 1 2
Cluster

0

5

10

15

20

N
um

be
r o

f P
oi

nt
s

Subsampled Points per Cluster

Figure 1: Comparison of different subsampling strategies on a simulated dataset with 3 imbalanced
clusters on the 2D sphere. Left: Points are selected uniformly at random from the dataset, preserving
the initial imbalance. Middle: The K-Medoids clustering method shows that medoids retain a similar
imbalance to the original data. Right: Our proposed method (Eq. DASSOT) selects points that are
maximally separated, leading to a more balanced representation of the data distribution. Note that a
slight imbalance remains, primarily due to the larger support of the more populated clusters.

method can be viewed as a reverse clustering strategy (see Remark 2.1), where instead of merging
points with high similarity, we focus on identifying points that are maximally separated.

Contributions. In this work, we propose a novel method for selecting a subset of n data points that
optimally captures the diversity of the dataset. Our approach is agnostic to downstream tasks and
solely requires a feature space with a meaningful similarity measure. It leverages a graph matching
formulation to identify a subset whose similarity structure approximates that of a disconnected
graph. Doing so, the method aims to select points that are maximally separated, ensuring the subset
uniformly represents the underlying data distribution. We introduce a single-loop, GPU-friendly
algorithm with linear time and memory complexity relative to the number of samples. We then show
on CIFAR that our method effectively re-balances imbalanced datasets and improves the performance
of the self-supervised learning SimCLR model.

2 Method

We consider a similarity matrix SX ∈ RN×N , which captures the pairwise similarities between the
samples (x1, . . . ,xN )⊤ ∈ RN×p, each of dimensionality p. In this work, we use cosine similarity,
meaning that for any pair (i, j), the similarity is defined as [SX]ij = ⟨x̃i, x̃j⟩, where x̃i =

xi

∥xi∥2

denotes the normalized sample xi. Our goal is to select a subset of n samples such that their
corresponding pairwise similarity matrix, which is a submatrix of SX, closely approximates the
disconnected similarity matrix Dn. The diagonal elements of Dn are set to 1 (indicating maximum
similarity), while its off-diagonal elements are set to −1 (indicating minimum similarity). The key
intuition behind this is to make the selected subset as diverse as possible by ensuring that the pairwise
similarities between the selected points are low.

Problem formulation. Our method, coined DASSOT for Data Sub-Sampling with Optimal Trans-
port, is based on the following optimization problem:

min
T1N=1n;T≥0

L(T) :=
∑
ijkl

([Dn]ij − [SX]kl)
2TikTjl + γKL(T⊤1n|h) (DASSOT)
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where h = n
N 1N , γ > 0 is a hyperparameter and KL(a|b) =

∑
i KL(ai|bi) is the Kullback-Leibler

divergence with KL(a|b) = a log(a/b) − a + b for two positive scalars a and b. In the above,
T ∈ Rn×N

+ can be seen as a soft mapping between the rows of Dn and SX. The final selected points
are then given by

(
maxj∈[[N ]] T

⋆
i,j

)
i∈[[n]]

where T⋆ solves DASSOT.

Interestingly, the first term on the right-hand side of the above objective vanishes if there exists a
subset I of [[N ]] with cardinality n, such that the submatrix SI

X ∈ Rn×n, restricted to the indices
in I , is exactly equal to Dn. Indeed, in this case for any bijection σ : [[n]] → I , one can construct
T⋆ such that for any i, T ⋆

i,σ(i) = 1 and T ⋆
i,j = 0 for all j ̸= σ(i). Optimization over the constraints

{T1N = 1n;T ≥ 0} can therefore be viewed as a relaxation of this subgraph identification problem,
where the goal is to find a probabilistic matching, or coupling, between the rows of the two similarity
matrices. This relaxation allows the development of efficient heuristics and is well-known in the
optimal transport literature. In fact, this problem is a specific case of the unbalanced Gromov-
Wasserstein problem [8, 7, 9]. More specifically, this is a semi-unbalanced Gromov-Wasserstein
problem, as the first marginal T1N is fixed, since we aim to select exactly n points.

The second term, γKL(T⊤1n|h), is the unbalanced relaxation of the second marginal T⊤1n. As
γ → +∞, this term enforces that all data points receive equal mass, which conflicts with our objective
of selecting a subset of the data. However, for smaller values of γ, this regularizer prevents the
coupling matrix T from collapsing onto only a few data points. This collapse can happen in certain
constrained geometries where the first term pushes to maximize large-scale similarities at the expense
of smaller ones.
Remark 2.1. (Relation to clustering) [16] demonstrated that state-of-the-art performance in clustering
can be achieved by transporting via Gromov-Wasserstein the data similarity onto the isolated similarity,
which serves as an ideally clustered template graph. Additionally, [2] and [11] have uncovered
theoretical connections between this approach and spectral clustering. In contrast, DASSOT follows
the opposite strategy by transporting the isolated similarity onto the data similarity, allowing us to
uniformly sample points from the underlying data distribution.

Algorithm. We propose to solve DASSOT using the mirror-descent algorithm with respect to the
KL geometry. This approach offers non-asymptotic convergence guarantees towards a stationary
point of the objective [13]. The method iteratively updates T according to the following optimization
step: T(i+1) ← argminT1N=1n,T≥0⟨T,∇TL(T(i))⟩ + εKL(T|T(i)) where ε > 0 is a tunable
hyperparameter and KL(A|B) =

∑
ij KL(Aij |Bij). The latter simplifies to the following explicit

update rule, as described in [14], which is particularly suited for GPU computations

T(i+1) ← diag
(
1n ⊘ (K(i)1N )

)
K(i) (1)

where K(i) = exp
(
∇TL(T(i))− ε log(T(i))

)
and the expression of∇TL is given in equation 3.

Complexity. We now present the details of computing the gradient ∇TL, which constitutes the
most computationally intensive part of the algorithm. Removing constant terms the above problem
DASSOT can be rewritten as

min
T1N=1n;T≥0

〈
1n1

⊤
nTS⊙2

X − 2DnTSX,T
〉
+
(
T⊤1n

)
log

((
T⊤1n

)
⊘ h

)
−

(
T⊤1n

)
. (2)

The gradient of the above w.r.t T is given by:

∇TL(T) = 1n1
⊤
nTS⊙2

X − 2DnTSX + 1n log
((
T⊤1n

)
⊘ h

)⊤
. (3)

The key components in the above gradient are the matrix-matrix products TS⊙2
X and TSX, which, at

first glance, seem to requireO(N2×n) operations. Fortunately, we can exploit the low-rank structure
of SX to reduce this computational cost. Specifically, since SX is a cosine similarity matrix, it can
be decomposed as SX = X̃X̃⊤, where X̃ = (x̃1, . . . , x̃N )⊤ ∈ RN×p. This allows us to compute
TSX as (TX̃)X̃⊤ in O(N × n× p) operations. Similarly, we can derive a low-rank factorization
for S⊙2

X . Note that for any vectors a and b in Rp, it holds that ⟨a,b⟩2 = ⟨aa⊤,bb⊤⟩. Using this
property, we can express S⊙2

X as ΨXΨ⊤
X, where ΨX = (vec(x̃1x̃

⊤
1 ), . . . , vec(x̃N x̃⊤

N ))⊤ ∈ RN×p2

.
This formulation allows us to compute TS⊙2

X as (TΨX)Ψ⊤
X in O(N × n × p2) operations. The

overall computational complexity of the gradient is O(N × n× p2). Consequently, it scales linearly
with the number of samples N , under the assumption that p2 ≪ N .
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Dataset α n k-Means k-Medoid DASSOT
CIFAR-10 1.2 5000 279.5 (0.4) 296.0 (0.3) 239.3 (8.3)

- 1.2 10000 594.7 (0.5) 595.4 (0.6) 522.4 (11.2)
- 1.5 5000 561.3 (0.4) 577.3 (0.3) 463.5 (7.7)
- 1.5 10000 1141.0 (0.5) 1148.4 (0.5) 1013.2 (12.8)

CIFAR-100 1.2 5000 260.2 (0.3) 251.8 (0.3) 243.4 (6.7)
- 1.2 10000 505.6 (0.7) 496.7 (0.8) 451.4 (8.7)
- 1.5 5000 444.1 (0.4) 443.9 (0.4) 436.2 (8.1)
- 1.5 10000 666.5 (0.5) 666.5 (0.8) 628.5 (9.2)

Table 1: Standard deviation of the number of points per class in the subsampled dataset for each
configuration. Lower standard deviation values suggest a more balanced distribution of points across
classes. The runtimes are reported between parentheses in seconds.

Dataset α n k-Means k-Medoid DASSOT
CIFAR-10 1.2 5000 81.8 81.9 82.7

- 1.2 10000 85.7 85.5 85.5
- 1.5 5000 59.3 58.7 62.9
- 1.5 10000 71.6 71.6 73.2

CIFAR-100 1.2 5000 55.2 55.5 56.2
- 1.2 10000 60.8 61.3 61.1
- 1.5 5000 43.9 44.2 48.6
- 1.5 10000 51.9 52.7 52.7

Table 2: Top-1 accuracy of the SimCLR model trained on the subsampled dataset for the different
configurations.

3 Experiments

To validate the effectiveness of our method, we conduct experiments on the CIFAR-10 and CIFAR-
100 [6] datasets. We preprocess the data to create an exponential class imbalance by sampling as
follows: for the k-th class, we sample Nk = N × e−k log(α) samples where N is the number of
samples per class. We test two levels of imbalance for each dataset: α = 1.2 and α = 1.5. We
then apply DASSOT to select a balanced subset of n samples. For DASSOT, we validate both ε
and γ in the set {1, 10, 100, 1000} and initialize T with the uniform plan 1

N 1n1
⊤
N . We experiment

with n = 5000 and n = 10000 samples, and compare our method to the k-Means and k-Medoids
clustering approaches, each taken by considering the best runs among 10 random initializations. The
latter two approaches are applied using the cosine similarity matrix SX as metric. It is important to
note that k-Medoid generates a subset of n samples directly from the original dataset, whereas k-
Means computes barycenter points, which do not correspond to actual samples in the dataset. Instead
of working with raw pixel data, we utilize features extracted by a randomly initialized ResNet50
model.

We assess both the ability of DASSOT to achieve a balanced dataset and the downstream performance
of the subsampled data when used with the SimCLR model [1]. For our SimCLR experiments, we
follow the same hyperparameters as outlined in the original SimCLR paper. We use a ResNet-50
model, a batch size of 256, a learning rate of 0.5, and apply a cosine learning rate schedule. The
model is trained for 500 epochs, and we report the top-1 accuracy on the regular balanced test set. The
results, shown in Table 1 and Table 2, demonstrate that DASSOT achieves superior class balancing
compared to k-Means and k-Medoids, leading to higher test accuracy for the SimCLR model in most
considered scenarios.

4 Opening Remarks

In this paper, we present an initial exploration of a graph matching strategy designed to select a subset
of data points that exhibit high diversity based on pairwise similarities. Moving forward, we aim to
further investigate the empirical benefits of this method. We anticipate that it will be especially useful
in scenarios where data clusters are not clearly defined, such as when there is a gradual transition
between different concepts. Additionally, we plan to explore improved techniques for constructing
the data similarity matrix by leveraging features from the SSL model itself, allowing for iterative
refinement of the data selection process.
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