Cours d'introduction a Python

Hugues Van Assel

November 15, 2022

1/118

@ Using Python as a Calculator
9 Towards programming

© Functions

@ Reading and Writing Files

© More on functions

2/118

The interpreter acts as a simple calculator: you can type an expression at
it and it will write the value. Expression syntax is straightforward: the
operators +, -, * and / work just like in most other languages (for
example, Pascal or C); parentheses (()) can be used for grouping. For
example:

>>> 2 + 2

>>> 50 - 5%6

20

>>> (50 - 5%6) / 4

5.0

>>> B8 / 5 # division always returns a floating point number

3/118

The integer numbers (e.g. 2, 4, 20) have type int, the ones with a
fractional part (e.g. 5.0, 1.6) have type float.
Division (/) always returns a float. To do floor division and get an integer
result (discarding any fractional result) you can use the // operator; to
calculate the remainder you can use %:

>>> 17 / 3 # classic division returns a float
5.666666666666667
>>>

>>> 17 // 3 # floor division discards the fractional part
5

>>> 17 % 3 # the % operator returns the remainder of the division
2

>>> 5 * 3 + 2 # floored guotient * divisor + remainder
17

4/118

Use the ** operator to calculate powers

>>> 5§ *x 2 # 5 squared
25

>>> 2 *x 7 # 2 to the power of 7
128

The equal sign (=) is used to assign a value to a variable.
>>> width = 20
>>> height = 5 * 9
>>>» width * height
900

5/118

Operators with mixed type operands convert the integer operand to
floating point.

>>»> 4 * 3.75 - 1
14.0

Python also has built-in support for complex numbers, and uses the j or J
suffix to indicate the imaginary part (e.g. 3+5j).

6/118

Exercice

Ecrire un programme qui, a partir de la saisie d'un rayon et d'une hauteur,
calcule le volume d'un cbne droit.

float (input ("Rayon du cdne (m) :"))
float (input ("Hauteur du cdne (m) :"}))

rayon
hauteur

Volume du cone

", volume, "m3"})

7/118

Strings

Python's strings can be enclosed in single quotes ('...") or double quotes
("...") with the same result 2. can be used to escape quotes:

>>> 'spam eggs' # single gquotes
'spam eggs'
>>> 'doesn\'t' # use \' to escape the single gquote...

"doesn't"

>>> "doesn't" # ...or use double guotes instead
"doesn't"

>>> '"Yes," they said.'

‘"Yes," they said.'

>>> "\"Yes,\" they said."

‘"Yes," they said.'

>>> ""Isn\'t," they said.'
'*"Isn\'t," they said.'

The built-in function len() returns the length of a string:

>>> 5 = 'supercalifragilisticexpialidocious'
>>> len(s)
34

8/118

rings

Strings can be concatenated (glued together) with the + operator, and
repeated with *
>>> # 3 times 'un', followed by 'ium'
>>> 3 * 'un' + "ium'
'unununium'
Strings can be indexed (subscripted), with the first character having index
0. There is no separate character type; a character is simply a string of

size one:
>>> word = 'Python’
>>> word[0] # character in position 0
p
>>> word[5] # character in position 5

9/118

Strings

Indices may also be negative numbers, to start counting from the right:

>>> word[-1] # last character

g

>>> word[-2] # second-last character
s

>>> word[-6]

.
Note that since -0 is the same as 0, negative indices start from -1. In

addition to indexing, slicing is also supported. While indexing is used to
obtain individual characters, slicing allows you to obtain substring:

>>> word[0:2] # characters from position 0 (included) to 2 (excluded)
'y

>>> word[2:5] # characters from position 2 (included) to 5 (excluded)
‘tho’

10/118

Strings

Slice indices have useful defaults; an omitted first index defaults to zero,
an omitted second index defaults to the size of the string being sliced.

>>> word[:2] # character from the beginning to position 2 (excluded)
"By
>>> word([4:] # characters from position 4 (included) to the end

on
>>> word[-2:] # characters from the second-last (included) to the end

on

Note how the start is always included, and the end always excluded. This

makes sure that s[:i] + s[i:] is always equal to s:
>>> word[:2] + word[2:]
‘Python'
>>> word[:4] + word[4:]
‘Python'
The extended slicing notation string[start:stop:step] uses three arguments
start, stop, and step

11/118

Exercice

Write a command to reverse a string. l

12/118

Python knows a number of compound data types, used to group together

other values. The most versatile is the list, which can be written as a list

of comma-separated values (items) between square brackets. Lists might

contain items of different types, but usually the items all have the same
type:

>>»> squares = [1, 4, 9, 16, 25]

>>> squares
[1, 4, 9, 18, 25]

13/118

Like strings (and all other built-in sequence types), lists can be indexed

and sliced:
squares[0] # indexing returns the item

>3

>>>
25
>>>

[gl'

squares[-1]

squares[-3:] # slicing returns a new list
16, 25]

14/118

Unlike strings, which are immutable, lists are a mutable type, i.e. it is
possible to change their content:

>»> cubes = [1, 8, 27, 65, 125] # something's wrong here
>»> 4 ** 3 # the cube of 4 is 64, not 65!
64

>>> cubes[3] = 64 # replace the wrong value
>>> cubes

{1, 8, 27, 64, 125]

All slice operations return a new list containing the requested elements.

This means that the following slice returns a shallow copy of the list:
>>> gquares([:]
[lf 4, 9, 16, 25]

15/118

Lists also support operations like concatenation:
>>> squares + [36, 49, 64, 81, 100]
i, 4, %, 1le, 25, 36, 49, 64, 81, 100]
You can also add new items at the end of the list, by using the append():

>>> cubes.append(216) # add the cube of 6
>>> cubes.append(7 ** 3) # and the cube of 7

>>»> cubes
[1, 8, 27, 64, 125, 216, 343]

16 /118

Assignment to slices is also possible, and this can even change the size of
the list or clear it entirely:

>>> letters = ['a', 'b', 'e', 'd', 'e', '£', 'g']
>>> letters

['a', 'B', 'e', 'd', 'e', '£', 'g']

>>> # replace some values

>>> letters[2:5] = ['Cc', 'D', 'E']

>>> letters

['a', 'B', '¢', 'D', 'E', '£', 'g']

>>> # now remove them

>>> letters[2:5] = []

>>> letters

['a'y 'p", "£', 'g']

>>> # eclear the list by replacing all the elements with an empty list
>>> letters[:] = []

>>> letters

[]

17 /118

Exercise

Write a program to print a specified list after removing the Oth, 4th and
5th elements.

18 /118

It is possible to nest lists (create lists containing other lists), for example:

>»> a=['a', 'b', 'e']

>»> n = [1, 2, 3]

>>> x = [a, n]

>>> X

[['a’y 'b'y "c'], [1, 2, 3]]
>>> x[0]

[‘a', 'B', '¢']
>>»>> x[0][1]
b

19/118

Towards Programming

>>> # Fibonacci series:
.. # the sum of two elements defines the next
wes @y b=10,1
>>> while a < 10:
print({a)
a, b = b, atb

@ The first line contains a multiple assignment: the variables a and b
simultaneously get the new values 0 and 1

@ The while loop executes as long as the condition (here: a j 10)
remains true. In Python, like in C, any non-zero integer value is true;
zero is false. The condition may also be a string or list value, in fact
any sequence; anything with a non-zero length is true, empty
sequences are false.

@ The body of the loop is indented: indentation is Python's way of
grouping statements.

20/118

Exercise

Exercise

Ecrire un programme qui approxime e, pour n assez grand, en utilisant la

formule :
n

1
e:Zﬁ

Exercise

o
.

Ecrire un programme qui prend un entier positif en entrée et annonce
combien de fois de suite cet entier est divisible par 2.

Exercise

| A

On dispose d'une feuille de papier d'épaisseur 0,1 mm. Combien de fois

doit-on la plier au minimum pour que I'épaisseur dépasse la hauteur de la
tour Eiffel 324 m.

21/118

Control flow

>>> x = int(input("Please enter an integer: "))
Please enter an integer: 42
>>> if x < 0:

s x =0

- print('Negative changed to zero')
... elif x == 0:

coe print('Zero’)

... elif x == 1:

- print('Single'})

... @lse:

coc print('More')

More

There can be zero or more elif parts, and the else part is optional. The
keyword ‘elif’ is short for ‘else if’, and is useful to avoid excessive
indentation.

22/118

Exercise

Exercise

L'utilisateur donne un entier positif n et le programme affiche PAIR s'il est
divisible par 2, IMPAIR sinon.

Exercise

| A\

Ecrire programme qui recoit une liste d'entiers et qui renvoie le minimum,
le maximum et la moyenne de cette liste.

23/118

Control flow

The for statement in Python differs a bit from what you may be used to in
C or Pascal. Rather than always iterating over an arithmetic progression of
numbers (like in Pascal), or giving the user the ability to define both the
iteration step and halting condition (as C), Python's for statement iterates
over the items of any sequence (a list or a string), in the order that they

appear in the sequence. For example (no pun intended):
>>> # Measure some strings:

. words = ['cat', 'window', ‘'defenestrate’]
>>> for w in words:

print(w, len(w))
cat 3
window 6
defenestrate 12

24/118

Control flow

If you do need to iterate over a sequence of numbers, the built-in function

range() comes in handy. It generates arithmetic progressions:
>>> list(range(5, 10))
(5, 6, 7, 8, 9]

>>»> list(range(0, 10, 3))
[0, 3, 6, 9]

>>> list(range(-10, -100, -30))
[-10, -40, -70]

25/118

Exercise

Exercise

Produisez puis affichez la liste des valeurs 4x+z ou x et z varient chacun
entre 0 inclus et 5 exclu.

Exercise

| N\

Ecrivez une fonction qui prend en entrée une liste de nombres et renvoie la
sous-liste de ses éléments compris entre -1 et 1.

A\

26/118

Control flow

To iterate over the indices of a sequence, you can combine range() and
len() as follows:
>»> a = ['Mary', 'had', 'a', 'little', 'lamb']
>>> for i in range(lemn(a)):
- print(i, a[i])

Mary
had

a
little
lamb

B W= O

Oor use enumerate.

27/118

Control flow

The break statement breaks out of the innermost enclosing for or while
loop. Loop statements may have an else clause; it is executed when the
loop terminates through exhaustion of the iterable (with for) or when the
condition becomes false (with while), but not when the loop is terminated
by a break statement.

>>> for n in range(2, 10):
for x in range(2, n):
if n & x == 0:
print(n, 'equals', x, '*', n//x)
break
else:
loop fell through without finding a factor
print(n, 'is a prime number')

is a prime number
is a prime number
equals 2 * 2
is a prime number
eguals 2 * 3
is a prime number
eguals 2 * 4
eguals 3 * 3

L= RS- RS, I SR U

28/118

Control flow

The continue statement continues with the next iteration of the loop:

>>> for num in range(2, 10):

if num % 2 == 0:
oo print("Found an even number”, num)
coc continue

print("Found an odd number", num)

Found an even number 2
Found an odd number 3
Found an even number 4
Found an odd number 5
Found an even number 6
Found an odd number 7
Found an even number 8
Found an odd number 9

20/118

Function

write Fibonacci series up to n
Print a Fibonacci series up to n."""
a, b=0,1
while a < n:
print{a, end=' ")
a, b = b, atb
print()

nonow

>>> def fib(n):

>>> # Now call the function we just defined:
. £ib(2000)

0112358 13 21 34 55 89 144 233 377 610 987 1597

The keyword def introduces a function definition. It must be followed by

the function name and the parenthesized list of formal parameters. The

statements that form the body of the function start at the next line, and
must be indented.

30/118

Function

>»>

>>>
>>>
[0,

def fib2(n): # return Fibonacci series up to n
"""Return a list containing the Fibeonaceci series up te n."""
result = []

a b=20,1
while a < n:

result.append(a) # see below
a, b = b, atb
return result

£100 = £ib2(100) # call it
£100 # write the result
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

The return statement returns with a value from a function. return
without an expression argument returns None. Falling off the end of a
function also returns None.

The statement result.append(a) calls a method of the list object
result. A method is a function that 'belongs’ to an object and is
named obj.methodname, where obj is some object (this may be an
expression), and methodname is the name of a method that is defined
by the object’s type.

31/118

Exercise

Givena number n, write an efficient function to print all prime factors of n. For example, if the
input numberis 12, then output should be "2 2 3". And if the input numberis 315, then output
should be “335 7",

32/118

Exercise

def primeFactors(n):

$ Print the number of twol\'s that diwide n
while n % 2 == (:

print 2,

n=mn}/2

n must be odd at this point
so a skip of 2 (1 = i + 2) can be used
for i in range(3,int (math.sqrt(n))+1,2):

while i1 diwvides n , print i ad diwvide n
while n % i== 0:

rint i,

n=n/i

Condition if n is a prime
number greater than 2
if n > 2:

print n

33/118

List methods

>>> fruits = ['orange', 'apple', 'pear’', 'banana’, 'kiwi', 'apple', ‘'banana’]
>>> fruits.count('apple')

2

>>> fruits.count('tangerine')

0

>>> fruits.index('banana')

=

>>> fruits.index('banana', 4) # Find next banana starting a position 4

6

>>> fruits.reverse()

>>> fruits

['banana’, 'apple', 'kiwi', 'banana', 'pear', 'apple', 'orange']

>>> fruits.append('grape')

>>> fruits

['‘banana’, 'apple', 'kiwi', ‘'banana', ‘'pear', 'apple', 'orange', 'grape’]
>>> fruits.sort()

>>> fruits

['apple', 'apple', ‘banana’, 'banana', ‘'grape’, 'kiwi', 'orange', 'pear’]
>>> fruits.pop()
‘pear’

Methods like insert, remove or sort only modify the list have no return
value printed — This is a design principle for all mutable data structures.
Not all data can be sorted or compared. For instance, [None, 'hello’, 10]

doesn’t sort because integers can't be compared to strings. w1

Exercise

Given a list, return a list of sum of digits of each element.

The original list is : [12, 67, 98, 34]
List Integer Summatiocn : [3, 13, 17, 7]

35/118

Exercise

Given a list, return a list of sum of digits of each element.

The original

List Integer

reg =
for ele
sum

for

res.

list is : [12, 67, 98, 34]
Summation : [3, 13, 17, 7]

in test list:

=0

digit in striele):
sum += 1int{digit])
append (sum)

36/118

Using Lists as Stacks

The list methods make it very easy to use a list as a stack, where the last
element added is the first element retrieved (“last-in, first-out™). To add
an item to the top of the stack, use append(). To retrieve an item from
the top of the stack, use pop() without an explicit index. For example:

>>>
>>>
55>
>>>
[3,
>>>
7

>>>
[3,
>>>
6

>>>
5

>>>
[3,

stack
stack.
stack.
stack
4, 5,
stack.

stack
4, 5,
stack.

stack.

stack
4]

= [3, 4, 5]
append(6)
append(7)
6, 7]

pop()

6]

pop()

pop()

37/118

Exercise

Given a string str, we need to print reverse of individual words.

Examples:

Input : Hello World
Output : olleH dlroW

Input : Geeks for Geeks
Output : skeeG rof skeeG

38/118

Exercise

4 reverses individual words of a string
def reverserWords (string):
st = list{)

Traverse giwven string and push all characters
to stack until we see a space.
for i in range(len(string)):
if string([i] != " ":
st.append{string[i])

When we see a space, we print
contents of stack.

else:
while len(st) > 0:
print{st[-1], end= "")
st.pop()
print{end = " ")

Since there may not be space after
last word.
while len(st) > 0:

print(st[-1], end = "")

st.pop()

39/118

Queues

It is also possible to use a list as a queue, where the first element added is
the first element retrieved (“first-in, first-out”); however, lists are not
efficient for this purpose. While appends and pops from the end of list are
fast, doing inserts or pops from the beginning of a list is slow (because all
of the other elements have to be shifted by one).

To implement a queue, use collections.deque which was designed to have
fast appends and pops from both ends. For example:

>>> from collections import degue

>>> gueue = deque(["Eric", "John", "Michael"])

>>> queue.append("Terry") # Terry arrives

>>> gueue.append("Graham") # Graham arrives

>>> gueue.popleft() # The first to arrive now leaves
‘Eric’

>>> gueue.popleft() # The second to arrive now leaves
*John'

>>> gueue # Remaining queue in order of arrival
deque(['Michael', 'Terry', ‘Graham'])

40/118

Given a gueue. The task is to reverse the queue using another another empty queue.

Examples:

Input: queue[] = {1, 2, 3, 4, 5}
OQutput: 5 4 3 2 1

Input: queue[] = {10, 20, 30, 40}
Output: 40 30 20 10

41/118

Queues

from collections import degue

Function to return the reversed queue
def reverse(q):

Size of ueue
s = leni(q)

Second gueue
ans = dequel)

for i in range(s):

Get the last element to the
front of gqueue
for j in range(s - 1):
® = g.popleft(
g.appendleft (x)

Get the last element and
add it to the new gueue
ans.appendleft{g.popleft())
return ans
42/118

Tuple

A tuple consists of a number of values separated by commas, for instance:
>>> £t = 12345, 54321, ‘'hellol’
>>> t[0]
12345
>>> ¢t
(12345, 54321, ‘hellol')
>>> # Tuples may be nested:
.u=+t, (1, 2, 3, 4, 5)
>>> 1
((12345, 54321, 'hello!'), (1, 2, 3, 4, 5))
>>> # Tuples are immutable:
. t[0] = 88888
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment
>>> # but they can contain mutable objects:
- v=([1, 2, 3], [3, 2, 1])
2> v
(r1, 2, 31, [3, 2, 1])

It is not possible to assign to the individual items of a tuple, however it is
possible to create tuples which contain mutable objects, such as lists.

43/118

Exercise Tuple

Given a Tuple List, perform sort on basis of total digits in tuple.

Examples:

Input: test list=[(3, 4,6, 723), (1,2}, (134, 234, 34)]
Output: [(1,2), (3, 4,6, 723), (134, 234, 34)]
Explanation : 2 < 6 < 8, sorted by increasing total digits.

Input : test_list=[(1,2), (134, 234, 34)]
Output: [(1,2), (134, 234, 34)]
Explanation : 2 < 8, sorted by increasing total digits.

44 /118

Exercise Tuple

def count digs{tup):

gets total digits in tuples
return sum([len(str({ele)) for ele in tup])

initializing list
test_list = [(3, 4, &, 723), (1, 2), (12345,), (134, 234, 34)]

printing original list
print ("The original list is : " + str(test list))

performing sort
test list.sort(key = count digs)

printing result
print ("Sorted tuples : " + stritest_list))

45/118

Sets

Python also includes a data type for sets. A set is an unordered collection
with no duplicate elements.

>>> basket = {'apple', 'orange', 'apple', 'pear', 'orange', ‘'banana’}

>>> print(basket) # show that duplicates have been removed
{'orange', 'banana', 'pear', 'apple'}

>>> 'orange' im basket # fast membership testing

True

>>> 'crabgrass' in basket

False

>>> # Demonstrate set operations on unique letters from two words

>>> a = set('abracadabra')

>>> b = set('alacazam')

>>> a # unique letters in a

{'a', 'z', 'b', 'e¢', 'd'}

»>> a-b # letters in a but not in b
{'r', 'd", 'b'}

>>>a | b # letters in a or b or both
{'a', 'e', 't', 'd', 'B', 'm', 'z', '1'}

>>> a & b # letters in both a and b
{'a', '¢'}

>>>a “ b # letters in a or b but not both
{'r', 'd', 'b', 'm', 'z', '1'}

46 /118

Exercise

Write a function that returns the difference between two lists (list of
elements that are not in the union of the two input lists).

47 /118

Solution difference of two lists

Python code t get difference of two lists
Using set()
def Diff(Llil, 1li2):
return list{set(l1il) - set(li2)) 4+ list(set(li2) - set{lil))

Not using set()

def Diff(1il, 1i2):
1i dif = [i for i im 1il + 1i2 if i nmot in 1il or i not im 1iZ]
return 1i dif

48/118

Dictionaries

>>> tel = {'jack'
>>> tel['guide’']
>>> tel

{'jack': 4098, ‘sape’': 4139, 'guidoc’': 4127}
>>> tel['jack']

4098, 'sape': 4139}
4127

4098

>>> del tel['sape']
>>> tel['irv'] = 4127
>>> tel

{'jack': 4098, ‘guido': 4127, 'irv': 4127}
>>> list(tel)

['jack', ‘guido’, 'irv']

>>> sorted(tel)

['guide’, 'irwv', 'jack']
>>> 'guido' in tel

True

>>> 'jack' mnot in tel
False

49/118

Dictionaries

The dict() constructor builds dictionaries directly from sequences of
key-value pairs:
>>> dict([('sape', 4139), ('guido', 4127), ('jack', 4098)1)
{'sape': 4139, 'guido': 4127, ‘jack': 4098}
In addition, dict comprehensions can be used to create dictionaries from

arbitrary key and value expressions:
>>> {x: x**2 for x in (2, 4, 6)}
{2: 4, 4: 16, 6: 36}
When the keys are simple strings, it is sometimes easier to specify pairs

using keyword arguments:
>>> dict(sape=4139, guido=4127, jack=4098)
{'sape': 4139, 'guido': 4127, ‘'jack': 4098}

50/118

Exercise dictionaries

Given a dictionary with values list, extract key whose value has most unigue values.

Input : test dict={"Gfg": [5,7, 9,4, 0], “is": [6,7, 4,3, 3], "Best": [%, 9, 6,5, 5]}
QOutput : "Gfg"

Explanation : "Gfg" having max unigue elements j.e 5.

Input : test dict={"Gfg": [5,7,7,7, 7], “is":[6,7, 7, 7], “Best": [9, %, 6,5, 5]}
Output : “Best”

Explanation : 3 (max) unique elements, 9, 6, 5 of “Best”.,

51/118

Solution Exercise dictionaries

initializing dictionary

test _diet = {"Gfg"™ : [5, 7, 5, 4, 5I,
"is" : [6, 7, 4, 3, 3],
"Bast™ : [9, 9, 6, 5, 5]}

printing original dictionary
print ("The original dictiocnary is : " + str(test_dict))

max_val = 0
max_key = lone
for sub in test dict:

test for length using len()

¢ converted to set for duplicates removal

if len(set(test_dict([sub])) > max val:
max wval = len{se;(test_dict[suh]))
max_key = sub

printing result
print ("Key with maximum unique walues : " + str(max key))

52/118

Mutable / Immutable

Objects of built-in type that are mutable are:
o Lists
@ Sets

@ Dictionaries

Objects of built-in type that are immutable are:
@ Numbers
@ Strings
@ Tuples

53/118

Looping techniques

When looping through dictionaries, the key and corresponding value can

be retrieved at the same time using the items() method.

>>> knights = {'gallahad': 'the pure', 'robin': 'the brave'}
>>> for k, v in knights.items():
print(k, v)

gallahad the pure
robin the brave

When looping through a sequence, the position index and corresponding
value can be retrieved at the same time using the enumerate() function:

>>> for i, v in enumerate(['tic', 'tac’', 'toe']):
print(i, v)

0 tie

1 tac

2 toe

54 /118

Looping techniques

To loop over two or more sequences at the same time, the entries can be
paired with the zip() function:

>>> guestions = ['name', 'quest', 'favorite coclor']
>>> answers = ['lancelot', 'the holy grail', 'blue’]
>>> for ¢, a in zip(questions, answers):
print('what is your {0}? It is {I1}.'.format(g, a))

What is your name? It is lancelot.
What is your quest? It is the holy grail.
What is your favorite color? It is blue.

To loop over a sequence in sorted order, use the sorted() function which
returns a new sorted list while leaving the source unaltered:

>>> basket = ['apple', 'orange', 'apple', 'pear', ‘orange', ‘'banana’]
>>> for 1 in sorted(basket):
print(i)
apple
apple
banana
orange
orange
pear

55/118

Looping techniques

Using set() on a sequence eliminates duplicate elements. The use of
sorted() in combination with set() over a sequence is an idiomatic way to
loop over unique elements of the sequence in sorted order:

>>> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana’]
>>> for f in sorted(set(basket)):
print(£f)
apple
banana
orange
pear

56 /118

Exercise

Given a stringand a number N, we need to mirror the characters from the N-th position up to
the length of the string in alphabetical order. In mirror operation, we change ‘a’ to 'z, 'b" to'y’,
and soon.

Examples:

Input : N = 3
paradox
Output : paizwlc
We mirror characters from position 3 to end.

Input ¢: N = 6

pneumonia

Output : pneumlmrz

57/118

Solution exercise

def mirrorChars{input,k):

¢ create dictionary

criginal = 'abcdefghijklmnopgrstuvexyz'
reverse = 'zyxwvutsrgpenmlkjihgfedcba'
dictChars = dict{zip(original,reverse))

¢ separate ogut string after length k to change
characters in mirror

prefix = input[0:k-1]

suffix input[k-1:]

mirror =
¢ change into mirror
for i in range(0,len(suffix)):

mirror = mirror + dictChars[suffix[i]]

concat prefix and mirrored part
print (prefix+mirror)

58/118

Exercise

There are some natural number whose all permutation is greater than or equal to that number
eg. 123, whose all the permutation (123, 231, 321) are greater than or equal to 123.
Given a natural number n, the task is to count all such number from 1 ton.

Examples:

Input:n=75.

Output: 14

Explanation:

1,2,3,4,56,7,8 911,12,

13, 14, 15 are the numbers whose all
permutation is greater than the number
itself. So, output 14.

Input:n=100.
Output: 54

50 /118

Exercise

def countNumber (n):
result = 0

4 Pushing 1 to 9 because all number
from 1 to 9 have this property.

s =[]

for i in range(l, 10):

if (i <= n):
s.append (1)
result += 1

take a number from stack and add
4 a digit smaller than or equal to last digit
of it.
while len(s) != 0:
tp = s[-1]
s.popi)
for j in range(tp % 10, 10):
x=tp * 10 + jJ
if (x <= n):
s.append (x)
result += 1

return result

60/118

open() returns a file object, and is most commonly used with two
arguments: open(filename, mode).

>>»> f = open('workfile', 'w')

The first argument is a string containing the filename. The second
argument is another string containing a few characters describing the way
in which the file will be used. Mode can be 'r’ when the file will only be
read, 'w’ for only writing (an existing file with the same name will be
erased), and 'a’ opens the file for appending; any data written to the file is
automatically added to the end. 'r+' opens the file for both reading and
writing. The mode argument is optional; 'r" will be assumed if it's omitted.

61/118

It is good practice to use the with keyword when dealing with file objects.
The advantage is that the file is properly closed after its suite finishes,
even if an exception is raised at some point.

>>> with open('workfile') as f:
read data = f.read()

>>> # We can check that the file has been automatically closed.

>>> f.closed
True

If you're not using the with keyword, then you should call f.close() to close
the file and immediately free up any system resources used by it.

62/118

After a file object is closed, either by a with statement or by calling
f.close(), attempts to use the file object will automatically fail.

>>> f.close()
>>> f.read()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: I/0 operation on closed file.

63/118

To read a file's contents, call f.read(size), which reads some quantity of
data and returns it as a string (in text mode) or bytes object (in binary
mode). size is an optional numeric argument. When size is omitted or
negative, the entire contents of the file will be read and returned.
Otherwise, at most size characters (in text mode) or size bytes (in binary
mode) are read and returned. If the end of the file has been reached,
f.read() will return an empty string (").

>>> f.read()
'This is the entire file.\n'
>>> f.read()

64/118

f.readline() reads a single line from the file; a newline character (\ n) is
left at the end of the string, and is only omitted on the last line of the file
if the file doesn’t end in a newline. This makes the return value
unambiguous; if f.readline() returns an empty string, the end of the file
has been reached, while a blank line is represented by '\ n’, a string
containing only a single newline.

>>> f.readline()

‘This is the first line of the file.\n®
>>> f.readline()

'Second line of the file\n'

>>> f.readline()

65,118

For reading lines from a file, you can loop over the file object. This is
memory efficient, fast, and leads to simple code:

>>> for line in f:
print(line, end="'")

This is the first line of the file.
Second line of the file

66 /118

Exercise

Write a python program to find the longest words. \
Write a Python program to count the frequency of words in a file. \
Write a Python program to count the number of nonempty lines in the file. \

67/118

Write a python program to find the longest words.
def longest_word(filename):
with open(filename, 'r') as infile:
words = infile.read().split()
max_len = len(max(words, key=len))
return [word for word in words if len(word) == max_len]

Write a Python program to count the frequency of words in a file.
from collections import Counter

def word_count(fname):
with open(fname) as f:
return Counter(f.read().split())

Write a Python program to count the number of nonempty lines in the file.
file = open("sample.txt", "r")
line_count = @
for line in file:
if Lline != "\n":
line_count += 1
file.close()

68/118

f.write(string) writes the contents of string to the file, returning the
number of characters written.

>>> f.write('This is a test\n')
15

Other types of objects need to be converted — either to a string (in text
mode) or a bytes object (in binary mode) — before writing them:

>>> value = ('the answer', 42)
>>»>> 5 = str(value)
>>> f.write(s)

18

convert the tuple to string

69 /118

To change the file object’s position, use f.seek(offset, whence). The
position is computed from adding offset to a reference point; the reference
point is selected by the whence argument. A whence value of 0 measures
from the beginning of the file, 1 uses the current file position, and 2 uses
the end of the file as the reference point. whence can be omitted and
defaults to 0, using the beginning of the file as the reference point.

>>> f = open('workfile', 'rb+')

>>> f.write(b'0123456789%abcdef')

16

>>> f.seek(5) # Go to the 6th byte in the file
L

>>> f.read(1l)

b'5'

>>> f.seek(-3, 2) # Go to the 3rd byte before the end
13

>>> f.read(1)

b'd’

70/118

Exercise

Write a Python program to reverse the lines and then the words of
poem.txt.

71/118

Exercise

with open('reversed words.txt', 'w') as writerl:
with open('reversed line.txt', 'w') as writer2:
with open('pecem.txt', 'r') as reader:
Note: readlines doesn't trim the line endings
line = reader.readlines()

Alternatively you could use

writer.writelines(reversed(line))

for rever in reversed(line):
writerl.write(rever[::-1])
writer2.write(rever)

72/118

Strings can easily be written to and read from a file. Numbers take a bit
more effort, since the read() method only returns strings, which will have
to be passed to a function like int(), which takes a string like '123" and
returns its numeric value 123. When you want to save more complex data
types like nested lists and dictionaries, parsing and serializing by hand
becomes complicated.

Python allows you to use the popular data interchange format called
JSON (JavaScript Object Notation). The standard module called json can
take Python data hierarchies, and convert them to string representations;
this process is called serializing. Reconstructing the data from the string
representation is called deserializing.

73/118

If you have an object x, you can view its JSON string representation with
a simple line of code:

>>> import json

>>» x = [1, 'simple', 'list']
>>> json.dumps(x)

‘Il, "simple”, "list"]'

74 /118

Another variant of the dumps() function, called dump(), simply serializes
the object to a text file. So if f is a text file object opened for writing, we
can do this:

json.dump(x, £)

To decode the object again, if f is a text file object which has been opened
for reading:

x = json.load(f)
This simple serialization technique can handle lists and dictionaries, but

serializing arbitrary class instances in JSON requires a bit of extra effort.
The reference for the json module contains an explanation of this.

75/118

Functions

def ask ok(prompt, retries=4, reminder='Please try again!'):
while True:

ok = input(prompt)

if ok in ('y', 'ye', 'yes'):
return True

if ok in ('n', 'noe', 'nop',
return False

retries = retries - 1

if retries < 0:
raise ValueError('invalid user response')

print(reminder)

'nope'):

This function can be called in several ways:
@ giving only the mandatory argument: ask ok('Do you really want to
quit?’)
@ giving one of the optional arguments: ask ok('OK to overwrite the
file?', 2)

@ or even giving all arguments: ask ok(’OK to overwrite the file?’, 2,
'Come on, only yes or no!")

76 /118

Functions

The default values are evaluated at the point of function definition in the
defining scope, so that

i=5

def farg=i):
print(arg)

77/118

Functions

Important warning: The default value is evaluated only once. This makes
a difference when the default is a mutable object such as a list, dictionary,
or instances of most classes. For example, the following function

accumulates the arguments passed to it on subsequent calls:
def f(a, L=[]):
L.append(a)
return L

print(£f(1}))
print(£(2))
print(£(3))

If you don't want the default to be shared between subsequent calls, you

can write the function like this instead:
def f(a, L=None):
if L is None:
L =1]
L.append(a)
return L

78/118

Functions

Functions can also be called using keyword arguments of the form
kwarg=value. For instance, the following function:

def parrot(voltage, state='a stiff', action='voom', type='Norwegian Blue'):

print("-- This parrot wouldn't", action, end=' ')
print("if you put", woltage, "volts through it.")
print("-- Lovely plumage, the", type)

print("-- It's", state, "!")

accepts one required argument (voltage) and three optional arguments
(state, action, and type). This function can be called in any of the

following ways:

parrot(1000)

parrot(veltage=1000)

parrot(voltage=1000000, action='VOOOOOM')
parrot(action='V00O000OM', voltage=1000000)

parrot('a million', 'bereft of life', 'jump')
parrot('a thousand', state='pushing up the daisies')

positional argument
keyword argument
keyword arguments
keyword arguments
positional arguments
positional, 1 keyword

oW oW W W R
Lo b B s

but all the following calls would be invalid:

parrot() # required argument missing

parrot(voltage=5.0, 'dead') # non-keyword argument after a keyword argument
parrot(110, voltage=220) # duplicate value for the same argument
parrot(actor='John Cleese') # unknown keyword argument

79/118

Functions

When a final formal parameter of the form **name is present, it receives a
dictionary (see Mapping Types — dict) containing all keyword arguments
except for those corresponding to a formal parameter. This may be
combined with a formal parameter of the form *name (described in the
next subsection) which receives a tuple containing the positional
arguments beyond the formal parameter list. (*name must occur before

**name.) For example, if we define a function like this:
def cheeseshop(kind, *arguments, **keywords):

print("-- Do you have any", kind, "?")
print("-- I'm sorry, we're all out of", kind)
for arg in arguments:

print(arg)
print("-" * 40)
for kw in keywords:

print(kw, ":", keywords[kw])

80/118

Functions

It could be called like this:
cheeseshop("Limburger", "It's very runny, sir.",
"It's really very, VERY runny, sir.",
shopkeeper="Michael Palin",
client="John Cleese",
sketch="Cheese Shop Sketch")

and of course it would print:
-- Do you have any Limburger ?
-- I'm sorry, we're all out of Limburger
It's very runny, sir.
It's really wvery, VERY runny, sir.

shopkeeper : Michael Palin
client : John Cleese
sketch : Cheese Shop Sketch

81/118

Functions

The reverse situation occurs when the arguments are already in a list or
tuple but need to be unpacked for a function call requiring separate
positional arguments. For instance, the built-in range() function expects
separate start and stop arguments. If they are not available separately,
write the function call with the *-operator to unpack the arguments out of
a list or tuple:

>>> list(range(3, 6)) # normal call with separate arguments

[3:, 4, 5]

>>> args = [3, 6]

>>> list(range(*args)) # call with arguments unpacked from a list
[3, 4, 5]

82/118

Functions

In the same fashion, dictionaries can deliver keyword arguments with the
**_operator:

>>> def parrot(voltage, state='a stiff', action='voom'):

soc print("-- This parrot wouldn't", action, end=' ')

soc print("if you put", voltage, "volts through it.", end=' ')

soc print("E's", state, "1")

>>> d = {"voltage": "four million", "state": "bleedin' demised", "action": "VOOM"}

>>> parrot(**d)
—- This parrot wouldn't VOOM if you put four million volts through it. E's bleedin

83/118

Functions

Small anonymous functions can be created with the lambda keyword. This
function returns the sum of its two arguments: lambda a, b: a+b. Like
nested function definitions, lambda functions can reference variables from

the containing scope:
>>> def make incrementor(n):
return lambda x: x + n

>>> f = make incrementor(42)
>»> £(0)

42

>>> f(1)

43

84118

Functions

The above example uses a lambda expression to return a function.
Another use is to pass a small function as an argument:

>>> pairs = [(1, 'one'), (2, 'two'), (3, 'three'}, (4, 'four')]
>>> pairs.sort(key=lambda pair: pair[l])

>»>> pairs

[(4, "four'y, (1, 'one'}), (3, 'three'}), (2, 'two')]

85,118

Exercise

Write a Python program to sort a list of dictionaries using Lambda.

Ex 2

Write a Python program to find the list with maximum and minimum
length using lambda.

Ex 3

Write a Python program to remove all elements from a given list present

in another list using lambda.

| A\

86,118

Solutions

Write a Python program to sort a list of dictionaries using Lambda:
models = [{'make':"'Nokia', 'model':216, 'color':'Black'}, {'make':'Mi Max', 'model':'2', 'color':lG
print("Original list of dictionaries :")
print(models)
sorted_models = sorted(models, key = lambda x: x['color'])

Write a Python program to find the list with maximum and minimum

length using lambda:
def max_length_list(input_list):
max_length = max(len(x) for x in input_list)
max_list = max(input_list, key = lambda i: len(i))
return(max_length, max_list)

def min_length_list(input_list):
min_length = min(len(x) for x in input_list)
min_list = min(input_list, key = lambda i: len(i))
return{min_length, min_list)

Write a Python program to remove all elements from a given list present

in another list using lambda.
def index_on_inner_list(listl, list2):
result = list(filter(lambda x: x not in list2, listl))
return result
87,/118

Practice

Ex 1

Write a function that generates one of 3 numbers according to given
probabilities

Ex 2

Given two polynomials represented by two arrays, write a function that
multiplies given two polynomials.

| \

| A\

Ex 3
Given n dice each with m faces, numbered from 1 to m, find the number
of ways to get sum X. (X is the summation of values on each face when all
the dice are thrown.)

88/118

Solution EX 1

def random(x, y, Z, pPX, PY, PZ):

4 Generate a number from 1 to 100
r = random.randint(l, 100)
4 r is smaller than px with probability px/100
if (r <= px):
return x

r is greater than px and smaller than
4 or equal to px+py with prebability py/100
if (r <= (px+py))

return y

4 r is greater than px+py and smaller than
4 or equal to 100 with probability pz/100
else:

return z

89/118

Solution EX 2

def multiply{a, B, m, n):
pred = [0] * (m+ n - 1);
Multiply two polynomials term by term

¢ Take ever term of first pelynomiazl
for i in range(m):

Multiply the current term of first
polynomial with every term of
¢ second polynomial.
for j in range(n):
prod[i + j] += A[i] * B[]];

return prod;

90/118

Solution EX 3

def findWays(m,n,x):
¢ Create a table to store results of subproblems. One extra
row and column are used for simpilicity (Number of dice
is directly used as row index and sum is directly used
4 as column index). The entries in Oth row and 0th column
are never used.
table=[[0]*(x+l) for i in range({n+l)] #Initizlize all entries as 0

for j in range(l,min(m+l,x+1)): #Table entries for only one dice
table(1][j]=1

Fill rest of the entries in table using recursive relation
i: number of dice, j: sum
for i in range(2,n+l):
for j in range(1l,x+1):
for k in range(l,min(m+l,j)):
table[i] [j]+=table[i-1][j-k

#print (dt)
Uncomment above line to see content of table

return table[-1][-1]

01/118

Numpy

import numpy as np # c'est la convention gue tout le monde adopte
a = np.array([l, 2, 3, 4]) # on affecte un tableau numpy "4 la main"
on verra qu'il y a des techniques automatiques trés utiles

b =2.5 * a # multiplication globale membre & membre
print(b) # b est devenu un tableau de flottants

¢ = np.array([5, 6, 7, 8]) # des entiers

d = b+c
print(d) # d a été "transtypé" en flottants

un exemple un peu plus "brutal" qui montre gue ga ne rame pas trop

posi = np.random.rand(10000000,2) # le7 lignes, 2 colonnes de positions x,y
X, ¥ = posi[:,0], posi[:,1] # les sections de tableaux fonctionnent (slices)
#8%precision 3 # commenté pour lancer tout le script

print(posi) # on voit la notation en double []

print(x) # c'est un vecteur

x0, y0 = 0.5, 0.5
dist = np.sqrt((x-x0)**2 + (y-y0)**2) # est un (gros) vecteur
print(dist.argmin()) # Indice du min de ce tableau

print(dist.min()) # le min

on peut ainsi coder de maniére "vectorisée" : élégant et efficace
d'une maniére trés proche des langages historigues comme Scilab, Matlab, etc

92/118

matplotlib

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(-10, 10, 200)
¥ np.sin(np.pi*x) / (np.pi*x)

]

plt.plot(x, y)
plt.show()

In a more pythonic way:

def monPlot(x, y, title='', color='red', linestyle='dashed', linewidth=2):

def

"""Un tracé y=f(x) un peu customisé.
fig = plt.figure() # une figure, vide pour 1'instant

axes = fig.add subplot(111) # il y aura un graphe dedans

axes.plot(x, y, color=color, linestyle=linestyle, linewidth=linewidth)
axes.set_title(title)

axes.grid() # on ajoute la grille derriére

plt.show()

f(a,b,e,d):

""" péfinir et plotter un trinéme
x = np.linspace(-10,10,20)

¥ = a*(x**3) + b*(x**2) + c*x + d
title = "$f(x) = (%s)x"3 + (%s)x"2 + (%s)x + (%s)$' % (a,b,c,d) # Rq dessous
monPlot(x,y, title=title)

93/118

Ex 4

Given an array of size n, generate and print all possible combinations of r
elements in array. For example, if input array is {1, 2, 3, 4} and r is 2,
then output should be {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4} and {3, 4}.

Ex 5
Write a function that takes two parameters n and k and returns the value
of Binomial Coefficient C(n, k).

A\

Given a number n, find the smallest number that has same set of digits as
n and is greater than n. If n is the greatest possible number with its set of
digits, then print “not possible”.

94 /118

Solution EX 4

def combinationUtil{arr, data, start,
end, index, r):

Current combination is ready
to be printed, print it
if (index == r):
for j in range(r):
print{data(j], end = " ");
print ()
return;

replace index with all
possible elements. The
condition "end-i+l >=
r-index"™ makes sure that
including one element at
index will make a combinatiocn
with remaining elements at
remaining positions
i = start;
while(i <= end and end - 1 + 1 »>= r - index):

datalindex] = arr[i];

combinationUtil {(arr, data, i + 1,

end, index + 1, r);:
i+=1;

95/118

Solution EX 5

def binomialCoefficient(n, k):

since C(n, k) = C{n, n - k)
if{k > n - k):
k=n-k
initialize result
res =
Calculate walue of
$ [n * (n-1) *-——* (n-k + 1)] / [k * (k-1) *-———%* 1]
for i in range(k):
res = res * (n - 1)
res = res f/ (1 + 1)

return res

96 /118

Solution EX 6

def findNext(number,n):

Start from the right most digit and find the £

it that is smaller than the digit next to it

ge(n-1,0,-1):

if number (i) > numb
break

If no such digit found,then all numbers are in
descending order, no greater number is possible
if i 1 and number = number([i-1]:

t "Next number not possible”

return

Find the smallest digit on the right side of
(i-1)'th digit that
X = numbe

s greater than number[i-1]

smallest

> x and number(i] < number[smallest]:
smallest = j

Swapping the above fo
smallest],number

nd smallest digit with (i-1)'th
1] = number(i-1], number[smallest

X iz the final number, in integer datatype

into number

for j in range(i):

x = x * 10 + numbexr[j]

Sort the digits after

numbexr

conver
for § in
X = x %

prin:

97 /118

Syntax errors, also known as parsing errors, are perhaps the most common

kind of complaint you get while you are still learning Python:
>>> while True print({'Hello world')
File "<stdin>", line 1
while True print('Helle world')

SyntaxError: invalid syntax

98/118

Even if a statement or expression is syntactically correct, it may cause an
error when an attempt is made to execute it. Errors detected during
execution are called exceptions. Most exceptions are not handled by

programs, however, and result in error messages as shown here:

33> 10 * (1/0)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

fZeroDivisionError: division by zero

>>> 4 + spam*3

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'spam' is not defined

>>> '2' + 2

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: can only concatenate str (not "int") to str

99/118

Errors

>>> while True:
try:
x = int(input("Please enter a number: "))
break
except ValueError:
print("Oops! That was no valid number. Try again...")

o First, the try clause (the statement(s) between the try and except
keywords) is executed.

@ If no exception occurs, the except clause is skipped and execution of
the try statement is finished.

@ If an exception occurs during execution of the try clause, the rest of
the clause is skipped. Then if its type matches the exception named
after the except keyword, the except clause is executed, and then
execution continues after the try statement.

@ If an exception occurs which does not match the exception named in
the except clause, it is passed on to outer try statements; if no
handler is found, it is an unhandled exception and execution stops
with a message as shown above. 100,118

Errors

A try statement may have more than one except clause, to specify
handlers for different exceptions. At most one handler will be executed.
Handlers only handle exceptions that occur in the corresponding try
clause, not in other handlers of the same try statement. An except clause

may name multiple exceptions as a parenthesized tuple, for example:

. except (RuntimeError, TypeError, NameError):
pass

101/118

The raise statement allows the programmer to force a specified exception
to occur. For example:

>>> raise NameError('HiThere')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: HiThere

102/118

Exercise

Exercise

You're going to write an interactive calculator! User input is assumed to
be a formula that consist of a number, an operator (+, -, etc), and
another number, separated by white space (e.g. 1 + 1). Split user input
using str.split(), and check whether the resulting list is valid:

@ If the input does not consist of 3 elements, raise a FormulaError,
which is a custom Exception.

@ Try to convert the first and third input to a float. Catch any
ValueError that occurs, and instead raise a FormulaError.

o If the second input is not an operator, again raise a FormulaError.

o If the input is valid, perform the calculation and print out the result.

v

103 /118

EX errors

#Custom errori
class FormulaError(Exception): pass

def

def

parse_input(user_input):
#TODO
return nl, op, n2

calculate(nl, op, n2):
if op == '+':
return nl + n2

if op == '-':
return nl - n2
if op == '*':
return nl * n2
if op == '/":

return nl / n2
raise FormulaError('{0} is not a valid operator'.format(op))

while True:

user_input = input('>>> ')
if user_input == 'quit':
break
nl, op, n2 = parse_input(user_input)
result = calculate(nl, op, n2)
print (result)

104 /118

Solution EX errors

#Custom error
class FormulaError(Exception): pass

def parse_input(user_input):
input_list = user_input.split()
if len(input_list) I= 3:
raise FormulaError('Input does not consist of three elements')
nl, op, n2 = input_list
try:
nl = float(nl)
n2 = float(n2)
except ValueError:
raise FormulaError('The first and third input value must be numbers')
return nl, op, n2

def calculate(nl, op, n2):
if op == '+':
return nl + n2
if op == '-'
return nl - n2
if op == '*':
return nl * n2
if op == '/':
retura nl / n2
raise FormulaError('{0} is not a valid operator'.format(op))

while True:
user_input = input('>>> ')
if user_input == 'quit':
break
nl, op, n2 = parse_input(user_input)
result = calculate(nl, op, n2)
print(result)

105 /118

Common string operations / Formatting

Accessing arguments by position:

>>> '{0}, {1}, {2}'.format('a', 'b', 'e')

'a, b, c'

>»> '{}, {}, {}' .format('a', 'b', ‘e') # 3.1+ only

'a, b, e'

»>>> '{2}, {1}, {0}'.format{'a', 'b", 'e')

‘e, b, a'

>>> '{2}, {1}, {0}'.format(*'abc') # unpacking argument seguence

'e, b, a'

>>> '{0}{1}{0}' .format('abra', 'cad') # arguments' indices can be repeated
'abracadabra’

106 /118

Common string operations / Formatting

Accessing arguments by name:

»>>> 'Coordinates: {latitude},
'Coordinates: 37.24N, -115.81W'
>>> coord = {'latitude': '37.24N', 'longitude': '-115.81W'}
»>>> 'Coordinates: {latitude}, {longitude}'.format(**coord)

'Coordinates: 37.24N, -115.81W'

Accessing arguments’ items:

>>> coord = (3, 5)

>>> '¥: {0[0]}; ¥: {0[1]}'.format(coord)
hie Ep e &Y

{longitude}'.format(latitude="'37.24N', longitude='-115.%8

107 /118

Common string operations / Formatting

Aligning the text and specifying a width:

>>> ' {:<30}'.format(’'left angned)

'left aligned

>»> '{:>30}'.format('right aligned')
rlght aligned'

'.format('centered’]

centered

>»> '{:+°30}'.format('centered')

ThkkkER kR kR Focanteredr kR Tk k kkk '

>>> ' {:730

Specifying a sign:

>>> 'f:4+4f}: {:+f}'.format(3.14, -3.14)
'+3.140000; -3.140000'

>»> 'f: f}: {: f}'.format(3.14, -3.14)

show it always

>>> 'f:-f}: {:-f}'.format(3.14, -3.14)

- # show only the minus -- same as
'3.140000; -3.140000"

use '*' as a fill char

- # show a space for positive numbers
3.140000; -3.140000"'

‘{:f};

{:£}'

108 /118

Common string operations / Formatting

Number

31415926

3.1415926

-1

2.71828

10

1000000

0.25

1000000000

13

13

13

Format

{z.2f}

{:+.2f}

{:+.2f}

{-.0f}

{:0>2d}

{:x<dd}

{:x<4d}

{:}

{:.2%}

{z.2e}

{:10d}

{:<10d}

{:~10d}

Output

3.14

+3.14

-1.00

05

5xxx

10xx

1,000,000

25.00%

1.00e+09

13

13

13

Description

Format float 2 decimal places

Format float 2 decimal places with sign
Format float 2 decimal places with sign
Format float with no decimal places

Pad number with zeros (left padding, width 2)
Pad number with x’s (right padding, width 4)
Pad number with x’s (right padding, width 4)
Number format with comma separator
Format percentage

Exponent notation

Right aligned (default, width 10)

Left aligned (width 10)

Center aligned (width 10)

109/118

Common string operations / Formatting

This example uses a precision variable to control how many decimal places
to show:
pi = 3.1415926
precision = 4
print(“{:.{}f}".format(pi, precision))
v 3.1415

This example formats the number 21 in each base:

print("{@:d} - {@:x} - {@:0} - {B:b} ".Tformat(21))
~ 21 - 15 - 25 - 108101

You can use .format as a function to separate text and formatting from
code:

defining formats
email_f = "Your email address was {email}".format

use elsewhere
print(email_f(email="bob@example.com"))

110/118

Exercise

Ex 1

Write a format string that will take the following four element tuple: (2,
123.4567, 10000, 12345.67) and produce: 'file_002 : 123.46, 1.00e+04,
1.23e+04’

Ex 2
Write a function that takes as input a tuple of integers and returns a
string of the integers separated by a '+’ sign.

| \

Write some Python code to print a table of several rows, each with a
name, an age and a cost. Make sure some of the costs are in the hundreds
and thousands to test your alignment specifiers.

111/118

Frame Title

def EX1():
t = (2, 123.4567, 10000, 12345.67)
print('file {:0>3d} :{:9.2f}, {:.2e}, {:.3g}'.format(*t))

def EX2():
in tuple = (1,2,3,4,5)
num = str{len{in_tuple))
form_string = ""
for x in range(0,len(in_tuple)):
form_string = form string + "{:d} + "
print(form_string.format(*in_tuple))
def EX3():
1 = [['Superman', 29, 10000],
['Wonder Woman', 5000, 1000],
['Spiderman’', 15, 100]]
for row in 1:
print('{:>{width}s} {:>{width}d} {:>{width}d}'.format(*row, width=15))

112 /118

Practice : crude integrale approximation

Write a function £(a, b, ¢) thatreturns (lb — Form a 24x12x6 array containing its values in pa-
rameter ranges [0,1] x [0,1] x [0,1].

Approximate the 3-d integral

1 1 p1
/ / / (a,b —c¢)dadbde
o Jo Jo

over this volume with the mean. The exact result is: h} 2 — % ~ 0,1931 .. .— Whatis
your relative error?

(Hints: use elementwise operations and broadcasting. You can make np.ogrid give a number of points
in given range with np.ogrid[0:1:203].)

Reminder Python functions:

def f(a, b, ¢):
return some_result

113/118

Solution crude integrale approximation

import numpy as np
from numpy import newaxis

def f{a, b, c):
return a**b - c

= np.linspace(0, 1, 24)
np.linspace(0, 1, 12)
¢ = np.linspace(0, 1, 6)

oo
]

samples = f(a[:,newaxis,newaxis],
b[newaxis,:,newaxis],
c[newaxis,newaxis,:])

integral = samples.mean()

print("Approximation:", integral)

114 /118

Practice : Markov Chain

Markov chain transition matrix P, and probability distribution on the states p:
1.0 <= P[i,j] <= 1:probability to go from state i to state j

2 Transtion rule: py, . = PTpGid

3. all{sum(P, axis=1) == 1), p.sum() == 1:normalization

Write a script that works with 5 states, and:
= Constructs a random matrix, and normalizes each row so that it is a transition matrix.
« Starts from a random (normalized) probability distribution p and takes 50 steps => p_50
« Computes the stationary distribution: the eigenvector of P. T with eigenvalue 1 (numerically: closest
to 1) => p_stationary

Remember to normalize the eigenvector — I didn't...

« Checks if p_50 and p_stationary are equal to tolerance 1e-5

Toolbox: np.random.rand, .dot(), np.linalg.eig, reductions, abs(), argmin, comparisons,
all, np.linalg.norm, eic.

115/118

Solution Markov Chain

import numpy as np
np.random.seed(1234)

n_states = 5
n_steps = 50
tolerance = le-5

Random transition matrix and state vector
P = np.random.rand(n_states, n_states)

p = np.randem.rand(n_states)
#
b

Normalize rows in P
/= P.sum(axis=1)[:,np.newaxis]

Normalize p
p /= p.sum()

Take steps
for k in range(n_steps):
p = P.T.dot(p)

p_50 =p
print(p_50)

Compute stationary state
w, v = np.linalg.eig(P.T)

j_stationary = np.argmin(abs(w - 1.0))
p_stationary = v[:,]j_stationary].real
p_stationary /= p_stationary.sum()
print(p_stationary)

compare
if all(abs({p_50 - p_stationary) < tolerance):

print("Tolerance satisfied in infty-norm")

if np.linalg.norm(p 50 - p stationary) < tolerance:
print("Tolerance satisfied in 2-norm")

116 /118

Practice : Data statistics

The data in populations.txt describes the populations of hares and lynxes {and carrots) in northern
Canada during 20 years:

>>> data = np.loadtxt('data/populations.txt’)

>>> year, hares, lynxes, carrots = data.T # trick: columns to variables
>>> import matplotlib.pyplot as plt

>>> plt.axes([0.2, 0.1, 0.5, 0.8])

<matplotlib.axes...Axes object at ...>

>>> plt.plot(year, hares, year, lynxes, year, carrots)
[<matplotlib.lines.Line2D object at ...>, ...]

>>> plt.legend(('Hare', 'Lynx', 'Carrot'), loc=(1.05, 0.5))
<natplotlib.legend.Legend object at ...>

Computes and print, based on the data in pepulations.txt...

1. The mean and std of the populations of each species for the years in the period.

2. Which year each species had the largest population.

3. Which species has the largest population for each year. (Hint: argsort & fancy indexing of
np.array(['H’, ‘L', 'C']))

4. Which years any of the populations is above 50000. (Hint: comparisons and np.any)

5. The top 2 years for each species when they had the lowest populations. (Hint: argsort, fancy
indexing)

6. Compare (plot) the change in hare population (see help(np.gradient)) and the number of lynx-
es. Check correlation (see help(np.corrcoef)).

.. all without for-loops.

117 /118

Solution Data statistics

import numpy as np

data = np.loadtxt('../../../data/populations.txt')
year, hares, lynxes, carrots = data.T
populations = dataf[:,1:]

print(" Hares, Lynxes, Carrots")
print("Mean:", populations.mean(axis=0))
print("std:", populations.std(axis=0))

j_max_years = np.argmax(populations, axis=0)
print("Max. year:", year[j_max years])

max_species = np.argmax(populations, axis=1)
species = np.array(['Hare', 'Lynx', 'Carrot'])
print("Max species:")

print(year)

print(species[max_species])

above_ 50000 = np.any(populations > 50000, axis=1)
print("Any above 50000:", year([above_50000])

j_top_2 = np.argsort(populations, axis=0)[:2]
print("Top 2 years with lowest populations for each:")
print(year[j_tep_2])

hare_grad = np.gradient(hares, 1.0)
print("diff(Hares) vs. Lynxes correlation", np.corrcoef(hare grad, lynxes)[0,1])

import matplotlib.pyplot as plt

plt.plot(year, hare_grad, year, -lynxes)
plt.savefig('plet.png')

118/118

	Using Python as a Calculator
	Towards programming
	Functions
	Reading and Writing Files
	More on functions

