
Cours d’introduction à Python

Hugues Van Assel

November 15, 2022

1 / 118

Overview

1 Using Python as a Calculator

2 Towards programming

3 Functions

4 Reading and Writing Files

5 More on functions

2 / 118

Numbers

The interpreter acts as a simple calculator: you can type an expression at
it and it will write the value. Expression syntax is straightforward: the

operators +, -, * and / work just like in most other languages (for
example, Pascal or C); parentheses (()) can be used for grouping. For

example:

3 / 118

Numbers

The integer numbers (e.g. 2, 4, 20) have type int, the ones with a
fractional part (e.g. 5.0, 1.6) have type float.

Division (/) always returns a float. To do floor division and get an integer
result (discarding any fractional result) you can use the // operator; to

calculate the remainder you can use %:

4 / 118

Numbers

Use the ** operator to calculate powers

The equal sign (=) is used to assign a value to a variable.

5 / 118

Numbers

0perators with mixed type operands convert the integer operand to
floating point.

Python also has built-in support for complex numbers, and uses the j or J
suffix to indicate the imaginary part (e.g. 3+5j).

6 / 118

Exercice

Écrire un programme qui, à partir de la saisie d’un rayon et d’une hauteur,
calcule le volume d’un cône droit.

7 / 118

Strings

Python’s strings can be enclosed in single quotes (’...’) or double quotes
(”...”) with the same result 2. can be used to escape quotes:

The built-in function len() returns the length of a string:

8 / 118

Strings

Strings can be concatenated (glued together) with the + operator, and
repeated with *

Strings can be indexed (subscripted), with the first character having index
0. There is no separate character type; a character is simply a string of

size one:

9 / 118

Strings

Indices may also be negative numbers, to start counting from the right:

Note that since -0 is the same as 0, negative indices start from -1. In
addition to indexing, slicing is also supported. While indexing is used to

obtain individual characters, slicing allows you to obtain substring:

10 / 118

Strings

Slice indices have useful defaults; an omitted first index defaults to zero,
an omitted second index defaults to the size of the string being sliced.

Note how the start is always included, and the end always excluded. This
makes sure that s[:i] + s[i:] is always equal to s:

The extended slicing notation string[start:stop:step] uses three arguments
start, stop, and step

11 / 118

Exercice

Exercise

Write a command to reverse a string.

12 / 118

List

Python knows a number of compound data types, used to group together
other values. The most versatile is the list, which can be written as a list
of comma-separated values (items) between square brackets. Lists might
contain items of different types, but usually the items all have the same

type:

13 / 118

List

Like strings (and all other built-in sequence types), lists can be indexed
and sliced:

14 / 118

List

Unlike strings, which are immutable, lists are a mutable type, i.e. it is
possible to change their content:

All slice operations return a new list containing the requested elements.
This means that the following slice returns a shallow copy of the list:

15 / 118

List

Lists also support operations like concatenation:

You can also add new items at the end of the list, by using the append():

16 / 118

List

Assignment to slices is also possible, and this can even change the size of
the list or clear it entirely:

17 / 118

Exercise

Exercise

Write a program to print a specified list after removing the 0th, 4th and
5th elements.

18 / 118

List

It is possible to nest lists (create lists containing other lists), for example:

19 / 118

Towards Programming

The first line contains a multiple assignment: the variables a and b
simultaneously get the new values 0 and 1

The while loop executes as long as the condition (here: a ¡ 10)
remains true. In Python, like in C, any non-zero integer value is true;
zero is false. The condition may also be a string or list value, in fact
any sequence; anything with a non-zero length is true, empty
sequences are false.

The body of the loop is indented: indentation is Python’s way of
grouping statements.

20 / 118

Exercise

Exercise

Écrire un programme qui approxime e, pour n assez grand, en utilisant la
formule :

e =
n∑

i=0

1

i !

Exercise

Ecrire un programme qui prend un entier positif en entrée et annonce
combien de fois de suite cet entier est divisible par 2.

Exercise

On dispose d’une feuille de papier d’épaisseur 0,1 mm. Combien de fois
doit-on la plier au minimum pour que l’épaisseur dépasse la hauteur de la
tour Eiffel 324 m.

21 / 118

Control flow

There can be zero or more elif parts, and the else part is optional. The
keyword ‘elif’ is short for ‘else if’, and is useful to avoid excessive

indentation.

22 / 118

Exercise

Exercise

L’utilisateur donne un entier positif n et le programme affiche PAIR s’il est
divisible par 2, IMPAIR sinon.

Exercise

Ecrire programme qui reçoit une liste d’entiers et qui renvoie le minimum,
le maximum et la moyenne de cette liste.

23 / 118

Control flow

The for statement in Python differs a bit from what you may be used to in
C or Pascal. Rather than always iterating over an arithmetic progression of
numbers (like in Pascal), or giving the user the ability to define both the

iteration step and halting condition (as C), Python’s for statement iterates
over the items of any sequence (a list or a string), in the order that they

appear in the sequence. For example (no pun intended):

24 / 118

Control flow

If you do need to iterate over a sequence of numbers, the built-in function
range() comes in handy. It generates arithmetic progressions:

25 / 118

Exercise

Exercise

Produisez puis affichez la liste des valeurs 4x+z où x et z varient chacun
entre 0 inclus et 5 exclu.

Exercise

Ecrivez une fonction qui prend en entrée une liste de nombres et renvoie la
sous-liste de ses éléments compris entre -1 et 1.

26 / 118

Control flow

To iterate over the indices of a sequence, you can combine range() and
len() as follows:

or use enumerate.

27 / 118

Control flow

The break statement breaks out of the innermost enclosing for or while
loop. Loop statements may have an else clause; it is executed when the

loop terminates through exhaustion of the iterable (with for) or when the
condition becomes false (with while), but not when the loop is terminated

by a break statement.

28 / 118

Control flow

The continue statement continues with the next iteration of the loop:

29 / 118

Function

The keyword def introduces a function definition. It must be followed by
the function name and the parenthesized list of formal parameters. The

statements that form the body of the function start at the next line, and
must be indented.

30 / 118

Function

The return statement returns with a value from a function. return
without an expression argument returns None. Falling off the end of a
function also returns None.

The statement result.append(a) calls a method of the list object
result. A method is a function that ‘belongs’ to an object and is
named obj.methodname, where obj is some object (this may be an
expression), and methodname is the name of a method that is defined
by the object’s type.

31 / 118

Exercise

32 / 118

Exercise

33 / 118

List methods

Methods like insert, remove or sort only modify the list have no return
value printed – This is a design principle for all mutable data structures.
Not all data can be sorted or compared. For instance, [None, ’hello’, 10]

doesn’t sort because integers can’t be compared to strings.
34 / 118

Exercise

Given a list, return a list of sum of digits of each element.

35 / 118

Exercise

Given a list, return a list of sum of digits of each element.

36 / 118

Using Lists as Stacks

The list methods make it very easy to use a list as a stack, where the last
element added is the first element retrieved (“last-in, first-out”). To add
an item to the top of the stack, use append(). To retrieve an item from
the top of the stack, use pop() without an explicit index. For example:

37 / 118

Exercise

38 / 118

Exercise

39 / 118

Queues

It is also possible to use a list as a queue, where the first element added is
the first element retrieved (“first-in, first-out”); however, lists are not

efficient for this purpose. While appends and pops from the end of list are
fast, doing inserts or pops from the beginning of a list is slow (because all

of the other elements have to be shifted by one).
To implement a queue, use collections.deque which was designed to have

fast appends and pops from both ends. For example:

40 / 118

Queues

41 / 118

Queues

42 / 118

Tuple

A tuple consists of a number of values separated by commas, for instance:

It is not possible to assign to the individual items of a tuple, however it is
possible to create tuples which contain mutable objects, such as lists.

43 / 118

Exercise Tuple

44 / 118

Exercise Tuple

45 / 118

Sets

Python also includes a data type for sets. A set is an unordered collection
with no duplicate elements.

46 / 118

Exercise

Exercise

Write a function that returns the difference between two lists (list of
elements that are not in the union of the two input lists).

47 / 118

Solution difference of two lists

48 / 118

Dictionaries

49 / 118

Dictionaries

The dict() constructor builds dictionaries directly from sequences of
key-value pairs:

In addition, dict comprehensions can be used to create dictionaries from
arbitrary key and value expressions:

When the keys are simple strings, it is sometimes easier to specify pairs
using keyword arguments:

50 / 118

Exercise dictionaries

51 / 118

Solution Exercise dictionaries

52 / 118

Mutable / Immutable

Objects of built-in type that are mutable are:

Lists

Sets

Dictionaries

Objects of built-in type that are immutable are:

Numbers

Strings

Tuples

53 / 118

Looping techniques

When looping through dictionaries, the key and corresponding value can
be retrieved at the same time using the items() method.

When looping through a sequence, the position index and corresponding
value can be retrieved at the same time using the enumerate() function:

54 / 118

Looping techniques

To loop over two or more sequences at the same time, the entries can be
paired with the zip() function:

To loop over a sequence in sorted order, use the sorted() function which
returns a new sorted list while leaving the source unaltered:

55 / 118

Looping techniques

Using set() on a sequence eliminates duplicate elements. The use of
sorted() in combination with set() over a sequence is an idiomatic way to

loop over unique elements of the sequence in sorted order:

56 / 118

Exercise

57 / 118

Solution exercise

58 / 118

Exercise

59 / 118

Exercise

60 / 118

Files

open() returns a file object, and is most commonly used with two
arguments: open(filename, mode).

The first argument is a string containing the filename. The second
argument is another string containing a few characters describing the way
in which the file will be used. Mode can be ’r’ when the file will only be
read, ’w’ for only writing (an existing file with the same name will be
erased), and ’a’ opens the file for appending; any data written to the file is
automatically added to the end. ’r+’ opens the file for both reading and
writing. The mode argument is optional; ’r’ will be assumed if it’s omitted.

61 / 118

Files

It is good practice to use the with keyword when dealing with file objects.
The advantage is that the file is properly closed after its suite finishes,
even if an exception is raised at some point.

If you’re not using the with keyword, then you should call f.close() to close
the file and immediately free up any system resources used by it.

62 / 118

Files

After a file object is closed, either by a with statement or by calling
f.close(), attempts to use the file object will automatically fail.

63 / 118

Files

To read a file’s contents, call f.read(size), which reads some quantity of
data and returns it as a string (in text mode) or bytes object (in binary
mode). size is an optional numeric argument. When size is omitted or
negative, the entire contents of the file will be read and returned.
Otherwise, at most size characters (in text mode) or size bytes (in binary
mode) are read and returned. If the end of the file has been reached,
f.read() will return an empty string (”).

64 / 118

Files

f.readline() reads a single line from the file; a newline character (\ n) is
left at the end of the string, and is only omitted on the last line of the file
if the file doesn’t end in a newline. This makes the return value
unambiguous; if f.readline() returns an empty string, the end of the file
has been reached, while a blank line is represented by ’\ n’, a string
containing only a single newline.

65 / 118

Files

For reading lines from a file, you can loop over the file object. This is
memory efficient, fast, and leads to simple code:

66 / 118

Exercise

Ex 1

Write a python program to find the longest words.

Ex 2

Write a Python program to count the frequency of words in a file.

Ex 3

Write a Python program to count the number of nonempty lines in the file.

67 / 118

Solutions

Write a python program to find the longest words.

Write a Python program to count the frequency of words in a file.

Write a Python program to count the number of nonempty lines in the file.

68 / 118

Files

f.write(string) writes the contents of string to the file, returning the
number of characters written.

Other types of objects need to be converted – either to a string (in text
mode) or a bytes object (in binary mode) – before writing them:

69 / 118

Files

To change the file object’s position, use f.seek(offset, whence). The
position is computed from adding offset to a reference point; the reference
point is selected by the whence argument. A whence value of 0 measures
from the beginning of the file, 1 uses the current file position, and 2 uses
the end of the file as the reference point. whence can be omitted and
defaults to 0, using the beginning of the file as the reference point.

70 / 118

Exercise

Ex

Write a Python program to reverse the lines and then the words of
poem.txt.

71 / 118

Exercise

72 / 118

Files

Strings can easily be written to and read from a file. Numbers take a bit
more effort, since the read() method only returns strings, which will have
to be passed to a function like int(), which takes a string like ’123’ and
returns its numeric value 123. When you want to save more complex data
types like nested lists and dictionaries, parsing and serializing by hand
becomes complicated.
Python allows you to use the popular data interchange format called
JSON (JavaScript Object Notation). The standard module called json can
take Python data hierarchies, and convert them to string representations;
this process is called serializing. Reconstructing the data from the string
representation is called deserializing.

73 / 118

Files

If you have an object x, you can view its JSON string representation with
a simple line of code:

74 / 118

Files

Another variant of the dumps() function, called dump(), simply serializes
the object to a text file. So if f is a text file object opened for writing, we
can do this:

To decode the object again, if f is a text file object which has been opened
for reading:

This simple serialization technique can handle lists and dictionaries, but
serializing arbitrary class instances in JSON requires a bit of extra effort.
The reference for the json module contains an explanation of this.

75 / 118

Functions

This function can be called in several ways:

giving only the mandatory argument: ask ok(’Do you really want to
quit?’)

giving one of the optional arguments: ask ok(’OK to overwrite the
file?’, 2)

or even giving all arguments: ask ok(’OK to overwrite the file?’, 2,
’Come on, only yes or no!’)

76 / 118

Functions

The default values are evaluated at the point of function definition in the
defining scope, so that

77 / 118

Functions

Important warning: The default value is evaluated only once. This makes
a difference when the default is a mutable object such as a list, dictionary,

or instances of most classes. For example, the following function
accumulates the arguments passed to it on subsequent calls:

If you don’t want the default to be shared between subsequent calls, you
can write the function like this instead:

78 / 118

Functions

Functions can also be called using keyword arguments of the form
kwarg=value. For instance, the following function:

accepts one required argument (voltage) and three optional arguments
(state, action, and type). This function can be called in any of the

following ways:

but all the following calls would be invalid:

79 / 118

Functions

When a final formal parameter of the form **name is present, it receives a
dictionary (see Mapping Types — dict) containing all keyword arguments

except for those corresponding to a formal parameter. This may be
combined with a formal parameter of the form *name (described in the

next subsection) which receives a tuple containing the positional
arguments beyond the formal parameter list. (*name must occur before

**name.) For example, if we define a function like this:

80 / 118

Functions

It could be called like this:

and of course it would print:

81 / 118

Functions

The reverse situation occurs when the arguments are already in a list or
tuple but need to be unpacked for a function call requiring separate

positional arguments. For instance, the built-in range() function expects
separate start and stop arguments. If they are not available separately,

write the function call with the *-operator to unpack the arguments out of
a list or tuple:

82 / 118

Functions

In the same fashion, dictionaries can deliver keyword arguments with the
**-operator:

83 / 118

Functions

Small anonymous functions can be created with the lambda keyword. This
function returns the sum of its two arguments: lambda a, b: a+b. Like

nested function definitions, lambda functions can reference variables from
the containing scope:

84 / 118

Functions

The above example uses a lambda expression to return a function.
Another use is to pass a small function as an argument:

85 / 118

Exercise

Ex 1

Write a Python program to sort a list of dictionaries using Lambda.

Ex 2

Write a Python program to find the list with maximum and minimum
length using lambda.

Ex 3

Write a Python program to remove all elements from a given list present
in another list using lambda.

86 / 118

Solutions

Write a Python program to sort a list of dictionaries using Lambda:

Write a Python program to find the list with maximum and minimum
length using lambda:

Write a Python program to remove all elements from a given list present
in another list using lambda.

87 / 118

Practice

Ex 1

Write a function that generates one of 3 numbers according to given
probabilities

Ex 2

Given two polynomials represented by two arrays, write a function that
multiplies given two polynomials.

Ex 3

Given n dice each with m faces, numbered from 1 to m, find the number
of ways to get sum X. (X is the summation of values on each face when all
the dice are thrown.)

88 / 118

Solution EX 1

89 / 118

Solution EX 2

90 / 118

Solution EX 3

91 / 118

Numpy

92 / 118

matplotlib

In a more pythonic way:

93 / 118

Practice

Ex 4

Given an array of size n, generate and print all possible combinations of r
elements in array. For example, if input array is {1, 2, 3, 4} and r is 2,
then output should be {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4} and {3, 4}.

Ex 5

Write a function that takes two parameters n and k and returns the value
of Binomial Coefficient C(n, k).

Ex 6

Given a number n, find the smallest number that has same set of digits as
n and is greater than n. If n is the greatest possible number with its set of
digits, then print “not possible”.

94 / 118

Solution EX 4

95 / 118

Solution EX 5

96 / 118

Solution EX 6

97 / 118

Errors

Syntax errors, also known as parsing errors, are perhaps the most common
kind of complaint you get while you are still learning Python:

98 / 118

Errors

Even if a statement or expression is syntactically correct, it may cause an
error when an attempt is made to execute it. Errors detected during
execution are called exceptions. Most exceptions are not handled by

programs, however, and result in error messages as shown here:

99 / 118

Errors

First, the try clause (the statement(s) between the try and except
keywords) is executed.
If no exception occurs, the except clause is skipped and execution of
the try statement is finished.
If an exception occurs during execution of the try clause, the rest of
the clause is skipped. Then if its type matches the exception named
after the except keyword, the except clause is executed, and then
execution continues after the try statement.
If an exception occurs which does not match the exception named in
the except clause, it is passed on to outer try statements; if no
handler is found, it is an unhandled exception and execution stops
with a message as shown above.

100 / 118

Errors

A try statement may have more than one except clause, to specify
handlers for different exceptions. At most one handler will be executed.

Handlers only handle exceptions that occur in the corresponding try
clause, not in other handlers of the same try statement. An except clause

may name multiple exceptions as a parenthesized tuple, for example:

101 / 118

Errors

The raise statement allows the programmer to force a specified exception
to occur. For example:

102 / 118

Exercise

Exercise

You’re going to write an interactive calculator! User input is assumed to
be a formula that consist of a number, an operator (+, -, etc), and
another number, separated by white space (e.g. 1 + 1). Split user input
using str.split(), and check whether the resulting list is valid:

If the input does not consist of 3 elements, raise a FormulaError,
which is a custom Exception.

Try to convert the first and third input to a float. Catch any
ValueError that occurs, and instead raise a FormulaError.

If the second input is not an operator, again raise a FormulaError.

If the input is valid, perform the calculation and print out the result.

103 / 118

EX errors

104 / 118

Solution EX errors

105 / 118

Common string operations / Formatting

Accessing arguments by position:

106 / 118

Common string operations / Formatting

Accessing arguments by name:

Accessing arguments’ items:

107 / 118

Common string operations / Formatting

Aligning the text and specifying a width:

Specifying a sign:

108 / 118

Common string operations / Formatting

109 / 118

Common string operations / Formatting

This example uses a precision variable to control how many decimal places
to show:

This example formats the number 21 in each base:

You can use .format as a function to separate text and formatting from
code:

110 / 118

Exercise

Ex 1

Write a format string that will take the following four element tuple: (2,
123.4567, 10000, 12345.67) and produce: ’file 002 : 123.46, 1.00e+04,
1.23e+04’

Ex 2

Write a function that takes as input a tuple of integers and returns a
string of the integers separated by a ’+’ sign.

Ex 3

Write some Python code to print a table of several rows, each with a
name, an age and a cost. Make sure some of the costs are in the hundreds
and thousands to test your alignment specifiers.

111 / 118

Frame Title

112 / 118

Practice : crude integrale approximation

113 / 118

Solution crude integrale approximation

114 / 118

Practice : Markov Chain

115 / 118

Solution Markov Chain

116 / 118

Practice : Data statistics

117 / 118

Solution Data statistics

118 / 118

	Using Python as a Calculator
	Towards programming
	Functions
	Reading and Writing Files
	More on functions

